Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier‐selective contacts, enable sputter processing, and prevent humidity ingress toward high‐performance tandem perovskite solar cells. However, the interaction between p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (15), p.e2308024-n/a
Hauptverfasser: Xiong, Zhijun, Wu, Long, Zhou, Xiaoheng, Yang, Shaofei, Liu, Zhiliang, Liu, Wentao, Zhao, Jie, Li, Wei, Yu, Cao, Yao, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e2308024
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Xiong, Zhijun
Wu, Long
Zhou, Xiaoheng
Yang, Shaofei
Liu, Zhiliang
Liu, Wentao
Zhao, Jie
Li, Wei
Yu, Cao
Yao, Kai
description Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier‐selective contacts, enable sputter processing, and prevent humidity ingress toward high‐performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD‐SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%. A SnOx interfacial layer with gradient compositions has been designed to overcome the dilemma between interface defects and electrical properties. Owing to the formation of homojunction, the gradient SnOx structure facilitates the charge extraction, enabling the perovskite–silicon tandem solar cells based on industrially fully‐textured silicon to achieve a certified efficiency of over 28%.
doi_str_mv 10.1002/smll.202308024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892948413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037177599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-2b5c543086539642b0b36387ec91e79fd880ee156dd119c9c19156b364e39503</originalsourceid><addsrcrecordid>eNqFkUtPGzEUhS1UBDSw7RJZ6qabBL_m4WU1ChRpUJGSveV47lCDZ5zaM0B-SP9vnYYEqRs2vrbud46OdRD6QsmMEsKuYufcjBHGSUmYOEJnNKd8mpdMfjrcKTlFn2N8JIRTJooTdMoLKRkT_Az9qXwfhzCawfYPOB3Yv9oGIr7tBwitNlY7XOsNBPxih1_4JujGQj_gyndrH-1gkx63PuB521rzb3UPwT_HJzvA1cI6a3yPl7pvoMML73TAFTgXd3Z7kdng-asBaLYpWHmOjlvtIly8zQlaXs-X1Y9p_fPmtvpeTw0vuJiyVWYykb6eZ1zmgq3Iiue8LMBICoVsm7IkADTLm4ZSaaShMj0SI4DLjPAJ-razXQf_e4Q4qM5Gk9LpHvwYFSslk6IUlCf063_oox9Dn8IpTnhBiyKTMlGzHWWCjzFAq9bBdjpsFCVq25fa9qUOfSXB5ZvtuOqgOeD7ghIgd8CLdbD5wE4t7ur63fwvNy-ing</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037177599</pqid></control><display><type>article</type><title>Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiong, Zhijun ; Wu, Long ; Zhou, Xiaoheng ; Yang, Shaofei ; Liu, Zhiliang ; Liu, Wentao ; Zhao, Jie ; Li, Wei ; Yu, Cao ; Yao, Kai</creator><creatorcontrib>Xiong, Zhijun ; Wu, Long ; Zhou, Xiaoheng ; Yang, Shaofei ; Liu, Zhiliang ; Liu, Wentao ; Zhao, Jie ; Li, Wei ; Yu, Cao ; Yao, Kai</creatorcontrib><description>Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier‐selective contacts, enable sputter processing, and prevent humidity ingress toward high‐performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD‐SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%. A SnOx interfacial layer with gradient compositions has been designed to overcome the dilemma between interface defects and electrical properties. Owing to the formation of homojunction, the gradient SnOx structure facilitates the charge extraction, enabling the perovskite–silicon tandem solar cells based on industrially fully‐textured silicon to achieve a certified efficiency of over 28%.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308024</identifier><identifier>PMID: 37992243</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>atomic layer deposition ; Atomic layer epitaxy ; Buffer layers ; Composition ; Electric contacts ; Electrical properties ; Fullerenes ; Funnels ; gradient composition ; perovskite/silicon tandem solar cell ; Perovskites ; Photovoltaic cells ; Process parameters ; Silicon ; Solar cells ; Thin films ; Tin oxides ; Vapor deposition</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (15), p.e2308024-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-2b5c543086539642b0b36387ec91e79fd880ee156dd119c9c19156b364e39503</citedby><cites>FETCH-LOGICAL-c3734-2b5c543086539642b0b36387ec91e79fd880ee156dd119c9c19156b364e39503</cites><orcidid>0000-0002-1841-1508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37992243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Zhijun</creatorcontrib><creatorcontrib>Wu, Long</creatorcontrib><creatorcontrib>Zhou, Xiaoheng</creatorcontrib><creatorcontrib>Yang, Shaofei</creatorcontrib><creatorcontrib>Liu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yu, Cao</creatorcontrib><creatorcontrib>Yao, Kai</creatorcontrib><title>Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier‐selective contacts, enable sputter processing, and prevent humidity ingress toward high‐performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD‐SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%. A SnOx interfacial layer with gradient compositions has been designed to overcome the dilemma between interface defects and electrical properties. Owing to the formation of homojunction, the gradient SnOx structure facilitates the charge extraction, enabling the perovskite–silicon tandem solar cells based on industrially fully‐textured silicon to achieve a certified efficiency of over 28%.</description><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Buffer layers</subject><subject>Composition</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>Fullerenes</subject><subject>Funnels</subject><subject>gradient composition</subject><subject>perovskite/silicon tandem solar cell</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Process parameters</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>Vapor deposition</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPGzEUhS1UBDSw7RJZ6qabBL_m4WU1ChRpUJGSveV47lCDZ5zaM0B-SP9vnYYEqRs2vrbud46OdRD6QsmMEsKuYufcjBHGSUmYOEJnNKd8mpdMfjrcKTlFn2N8JIRTJooTdMoLKRkT_Az9qXwfhzCawfYPOB3Yv9oGIr7tBwitNlY7XOsNBPxih1_4JujGQj_gyndrH-1gkx63PuB521rzb3UPwT_HJzvA1cI6a3yPl7pvoMML73TAFTgXd3Z7kdng-asBaLYpWHmOjlvtIly8zQlaXs-X1Y9p_fPmtvpeTw0vuJiyVWYykb6eZ1zmgq3Iiue8LMBICoVsm7IkADTLm4ZSaaShMj0SI4DLjPAJ-razXQf_e4Q4qM5Gk9LpHvwYFSslk6IUlCf063_oox9Dn8IpTnhBiyKTMlGzHWWCjzFAq9bBdjpsFCVq25fa9qUOfSXB5ZvtuOqgOeD7ghIgd8CLdbD5wE4t7ur63fwvNy-ing</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xiong, Zhijun</creator><creator>Wu, Long</creator><creator>Zhou, Xiaoheng</creator><creator>Yang, Shaofei</creator><creator>Liu, Zhiliang</creator><creator>Liu, Wentao</creator><creator>Zhao, Jie</creator><creator>Li, Wei</creator><creator>Yu, Cao</creator><creator>Yao, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1841-1508</orcidid></search><sort><creationdate>20240401</creationdate><title>Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28</title><author>Xiong, Zhijun ; Wu, Long ; Zhou, Xiaoheng ; Yang, Shaofei ; Liu, Zhiliang ; Liu, Wentao ; Zhao, Jie ; Li, Wei ; Yu, Cao ; Yao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-2b5c543086539642b0b36387ec91e79fd880ee156dd119c9c19156b364e39503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Buffer layers</topic><topic>Composition</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>Fullerenes</topic><topic>Funnels</topic><topic>gradient composition</topic><topic>perovskite/silicon tandem solar cell</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Process parameters</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zhijun</creatorcontrib><creatorcontrib>Wu, Long</creatorcontrib><creatorcontrib>Zhou, Xiaoheng</creatorcontrib><creatorcontrib>Yang, Shaofei</creatorcontrib><creatorcontrib>Liu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Yu, Cao</creatorcontrib><creatorcontrib>Yao, Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zhijun</au><au>Wu, Long</au><au>Zhou, Xiaoheng</au><au>Yang, Shaofei</au><au>Liu, Zhiliang</au><au>Liu, Wentao</au><au>Zhao, Jie</au><au>Li, Wei</au><au>Yu, Cao</au><au>Yao, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>15</issue><spage>e2308024</spage><epage>n/a</epage><pages>e2308024-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier‐selective contacts, enable sputter processing, and prevent humidity ingress toward high‐performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD‐SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%. A SnOx interfacial layer with gradient compositions has been designed to overcome the dilemma between interface defects and electrical properties. Owing to the formation of homojunction, the gradient SnOx structure facilitates the charge extraction, enabling the perovskite–silicon tandem solar cells based on industrially fully‐textured silicon to achieve a certified efficiency of over 28%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37992243</pmid><doi>10.1002/smll.202308024</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1841-1508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (15), p.e2308024-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2892948413
source Wiley Online Library Journals Frontfile Complete
subjects atomic layer deposition
Atomic layer epitaxy
Buffer layers
Composition
Electric contacts
Electrical properties
Fullerenes
Funnels
gradient composition
perovskite/silicon tandem solar cell
Perovskites
Photovoltaic cells
Process parameters
Silicon
Solar cells
Thin films
Tin oxides
Vapor deposition
title Constructing tin oxides Interfacial Layer with Gradient Compositions for Efficient Perovskite/Silicon Tandem Solar Cells with Efficiency Exceeding 28
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20tin%20oxides%20Interfacial%20Layer%20with%20Gradient%20Compositions%20for%20Efficient%20Perovskite/Silicon%20Tandem%20Solar%20Cells%20with%20Efficiency%20Exceeding%2028&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xiong,%20Zhijun&rft.date=2024-04-01&rft.volume=20&rft.issue=15&rft.spage=e2308024&rft.epage=n/a&rft.pages=e2308024-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308024&rft_dat=%3Cproquest_cross%3E3037177599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037177599&rft_id=info:pmid/37992243&rfr_iscdi=true