Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis

Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre‐ and post‐synaptic regions. However, the gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2024-04, Vol.168 (4), p.342-354
Hauptverfasser: Ohkawara, Bisei, Kurokawa, Masaomi, Kanai, Akinori, Imamura, Kiyomi, Chen, Guiying, Zhang, Ruchen, Masuda, Akio, Higashi, Koichi, Mori, Hiroshi, Suzuki, Yutaka, Kurokawa, Ken, Ohno, Kinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 4
container_start_page 342
container_title Journal of neurochemistry
container_volume 168
creator Ohkawara, Bisei
Kurokawa, Masaomi
Kanai, Akinori
Imamura, Kiyomi
Chen, Guiying
Zhang, Ruchen
Masuda, Akio
Higashi, Koichi
Mori, Hiroshi
Suzuki, Yutaka
Kurokawa, Ken
Ohno, Kinji
description Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre‐ and post‐synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single‐nucleus RNA sequencing (snRNA‐seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ‐constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative β‐catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where β‐catenin serves as a structural protein to organize the membrane‐anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where β‐catenin serves as a transcriptional coactivator in Wnt/β‐catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA‐seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/β‐catenin signaling that regulate the formation of the embryonic NMJ. Schematic summary of the current snRNA‐seq analysis. The NMJ and MTJ nuclei express Wnt/β‐catenin signaling molecules and are stimulated by Wnt ligands originated from the spinal motor neurons and the perichondrium/chondrocytes, respectively.
doi_str_mv 10.1111/jnc.16013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892945564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037541683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-51303801041227b6da2c2cc63b3177b7e6b892e6d20130d1f0fd704b7324bbf93</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EgnIZeAFkiQWGUN9iNyOquKqCpYzIih0HXCV2sWOhvD2GAgMSZznLd3795wPgGKMLnGe6cvoCc4TpFphgJnDBcFltgwlChBQUMbIH9mNcIYQ543gX7FFRVYwJNAHPy1C7qINdD743cB18azsDfQtjUnF09XqwGvajd0l3xsJ6gMOrgc6k4PsUderqAFfJ6cF6B62Dpldh9C_GmWjjIdhp6y6ao-99AJ6ur5bz22LxeHM3v1wUmpaUFiWmiM4QRgwTIhRvaqKJ1pwqioVQwnA1q4jhDck_oga3qG0EYkpQwpRqK3oAzja5uf9bMnGQvY3adF3tjE9RknxesbLkLKOnf9CVT8HldjKXECXDfEYzdb6hdPAxBtPKdbB9HUaJkfx0LrNz-eU8syffiUn1pvklfyRnYLoB3rPa8f8kef8w30R-AN32ivY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037541683</pqid></control><display><type>article</type><title>Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ohkawara, Bisei ; Kurokawa, Masaomi ; Kanai, Akinori ; Imamura, Kiyomi ; Chen, Guiying ; Zhang, Ruchen ; Masuda, Akio ; Higashi, Koichi ; Mori, Hiroshi ; Suzuki, Yutaka ; Kurokawa, Ken ; Ohno, Kinji</creator><creatorcontrib>Ohkawara, Bisei ; Kurokawa, Masaomi ; Kanai, Akinori ; Imamura, Kiyomi ; Chen, Guiying ; Zhang, Ruchen ; Masuda, Akio ; Higashi, Koichi ; Mori, Hiroshi ; Suzuki, Yutaka ; Kurokawa, Ken ; Ohno, Kinji</creatorcontrib><description>Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre‐ and post‐synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single‐nucleus RNA sequencing (snRNA‐seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ‐constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative β‐catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where β‐catenin serves as a structural protein to organize the membrane‐anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where β‐catenin serves as a transcriptional coactivator in Wnt/β‐catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA‐seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/β‐catenin signaling that regulate the formation of the embryonic NMJ. Schematic summary of the current snRNA‐seq analysis. The NMJ and MTJ nuclei express Wnt/β‐catenin signaling molecules and are stimulated by Wnt ligands originated from the spinal motor neurons and the perichondrium/chondrocytes, respectively.</description><identifier>ISSN: 0022-3042</identifier><identifier>ISSN: 1471-4159</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/jnc.16013</identifier><identifier>PMID: 37994470</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetylcholine receptors ; Animals ; beta Catenin - metabolism ; Catenin ; Chondrocytes ; Clustering ; Diaphragm ; Diaphragms ; Embryogenesis ; Embryonic Development ; Embryonic growth stage ; Gene expression ; Gene sequencing ; Genes ; Membrane proteins ; Mice ; Motor neurons ; Muscle, Skeletal - metabolism ; Myoblasts ; myonucleus ; myotendinous junction ; Myotubes ; Neonates ; neuromuscular junction ; Neuromuscular Junction - genetics ; Neuromuscular Junction - metabolism ; Neuromuscular junctions ; Neurons ; Nuclei (cytology) ; Perichondrium ; Receptors, Cholinergic - metabolism ; RNA, Small Nuclear - metabolism ; Skeletal muscle ; snRNA ; Transcriptome ; Transcriptomes ; Wnt protein ; Wnt signaling ; Wnt Signaling Pathway - genetics ; β‐catenin</subject><ispartof>Journal of neurochemistry, 2024-04, Vol.168 (4), p.342-354</ispartof><rights>2023 International Society for Neurochemistry.</rights><rights>Copyright © 2024 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-51303801041227b6da2c2cc63b3177b7e6b892e6d20130d1f0fd704b7324bbf93</citedby><cites>FETCH-LOGICAL-c3533-51303801041227b6da2c2cc63b3177b7e6b892e6d20130d1f0fd704b7324bbf93</cites><orcidid>0000-0002-1987-458X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjnc.16013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjnc.16013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37994470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohkawara, Bisei</creatorcontrib><creatorcontrib>Kurokawa, Masaomi</creatorcontrib><creatorcontrib>Kanai, Akinori</creatorcontrib><creatorcontrib>Imamura, Kiyomi</creatorcontrib><creatorcontrib>Chen, Guiying</creatorcontrib><creatorcontrib>Zhang, Ruchen</creatorcontrib><creatorcontrib>Masuda, Akio</creatorcontrib><creatorcontrib>Higashi, Koichi</creatorcontrib><creatorcontrib>Mori, Hiroshi</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Kurokawa, Ken</creatorcontrib><creatorcontrib>Ohno, Kinji</creatorcontrib><title>Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre‐ and post‐synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single‐nucleus RNA sequencing (snRNA‐seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ‐constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative β‐catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where β‐catenin serves as a structural protein to organize the membrane‐anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where β‐catenin serves as a transcriptional coactivator in Wnt/β‐catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA‐seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/β‐catenin signaling that regulate the formation of the embryonic NMJ. Schematic summary of the current snRNA‐seq analysis. The NMJ and MTJ nuclei express Wnt/β‐catenin signaling molecules and are stimulated by Wnt ligands originated from the spinal motor neurons and the perichondrium/chondrocytes, respectively.</description><subject>Acetylcholine receptors</subject><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>Catenin</subject><subject>Chondrocytes</subject><subject>Clustering</subject><subject>Diaphragm</subject><subject>Diaphragms</subject><subject>Embryogenesis</subject><subject>Embryonic Development</subject><subject>Embryonic growth stage</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Motor neurons</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myoblasts</subject><subject>myonucleus</subject><subject>myotendinous junction</subject><subject>Myotubes</subject><subject>Neonates</subject><subject>neuromuscular junction</subject><subject>Neuromuscular Junction - genetics</subject><subject>Neuromuscular Junction - metabolism</subject><subject>Neuromuscular junctions</subject><subject>Neurons</subject><subject>Nuclei (cytology)</subject><subject>Perichondrium</subject><subject>Receptors, Cholinergic - metabolism</subject><subject>RNA, Small Nuclear - metabolism</subject><subject>Skeletal muscle</subject><subject>snRNA</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Wnt protein</subject><subject>Wnt signaling</subject><subject>Wnt Signaling Pathway - genetics</subject><subject>β‐catenin</subject><issn>0022-3042</issn><issn>1471-4159</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUhi0EgnIZeAFkiQWGUN9iNyOquKqCpYzIih0HXCV2sWOhvD2GAgMSZznLd3795wPgGKMLnGe6cvoCc4TpFphgJnDBcFltgwlChBQUMbIH9mNcIYQ543gX7FFRVYwJNAHPy1C7qINdD743cB18azsDfQtjUnF09XqwGvajd0l3xsJ6gMOrgc6k4PsUderqAFfJ6cF6B62Dpldh9C_GmWjjIdhp6y6ao-99AJ6ur5bz22LxeHM3v1wUmpaUFiWmiM4QRgwTIhRvaqKJ1pwqioVQwnA1q4jhDck_oga3qG0EYkpQwpRqK3oAzja5uf9bMnGQvY3adF3tjE9RknxesbLkLKOnf9CVT8HldjKXECXDfEYzdb6hdPAxBtPKdbB9HUaJkfx0LrNz-eU8syffiUn1pvklfyRnYLoB3rPa8f8kef8w30R-AN32ivY</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Ohkawara, Bisei</creator><creator>Kurokawa, Masaomi</creator><creator>Kanai, Akinori</creator><creator>Imamura, Kiyomi</creator><creator>Chen, Guiying</creator><creator>Zhang, Ruchen</creator><creator>Masuda, Akio</creator><creator>Higashi, Koichi</creator><creator>Mori, Hiroshi</creator><creator>Suzuki, Yutaka</creator><creator>Kurokawa, Ken</creator><creator>Ohno, Kinji</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1987-458X</orcidid></search><sort><creationdate>202404</creationdate><title>Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis</title><author>Ohkawara, Bisei ; Kurokawa, Masaomi ; Kanai, Akinori ; Imamura, Kiyomi ; Chen, Guiying ; Zhang, Ruchen ; Masuda, Akio ; Higashi, Koichi ; Mori, Hiroshi ; Suzuki, Yutaka ; Kurokawa, Ken ; Ohno, Kinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-51303801041227b6da2c2cc63b3177b7e6b892e6d20130d1f0fd704b7324bbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetylcholine receptors</topic><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>Catenin</topic><topic>Chondrocytes</topic><topic>Clustering</topic><topic>Diaphragm</topic><topic>Diaphragms</topic><topic>Embryogenesis</topic><topic>Embryonic Development</topic><topic>Embryonic growth stage</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Motor neurons</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myoblasts</topic><topic>myonucleus</topic><topic>myotendinous junction</topic><topic>Myotubes</topic><topic>Neonates</topic><topic>neuromuscular junction</topic><topic>Neuromuscular Junction - genetics</topic><topic>Neuromuscular Junction - metabolism</topic><topic>Neuromuscular junctions</topic><topic>Neurons</topic><topic>Nuclei (cytology)</topic><topic>Perichondrium</topic><topic>Receptors, Cholinergic - metabolism</topic><topic>RNA, Small Nuclear - metabolism</topic><topic>Skeletal muscle</topic><topic>snRNA</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Wnt protein</topic><topic>Wnt signaling</topic><topic>Wnt Signaling Pathway - genetics</topic><topic>β‐catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohkawara, Bisei</creatorcontrib><creatorcontrib>Kurokawa, Masaomi</creatorcontrib><creatorcontrib>Kanai, Akinori</creatorcontrib><creatorcontrib>Imamura, Kiyomi</creatorcontrib><creatorcontrib>Chen, Guiying</creatorcontrib><creatorcontrib>Zhang, Ruchen</creatorcontrib><creatorcontrib>Masuda, Akio</creatorcontrib><creatorcontrib>Higashi, Koichi</creatorcontrib><creatorcontrib>Mori, Hiroshi</creatorcontrib><creatorcontrib>Suzuki, Yutaka</creatorcontrib><creatorcontrib>Kurokawa, Ken</creatorcontrib><creatorcontrib>Ohno, Kinji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohkawara, Bisei</au><au>Kurokawa, Masaomi</au><au>Kanai, Akinori</au><au>Imamura, Kiyomi</au><au>Chen, Guiying</au><au>Zhang, Ruchen</au><au>Masuda, Akio</au><au>Higashi, Koichi</au><au>Mori, Hiroshi</au><au>Suzuki, Yutaka</au><au>Kurokawa, Ken</au><au>Ohno, Kinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2024-04</date><risdate>2024</risdate><volume>168</volume><issue>4</issue><spage>342</spage><epage>354</epage><pages>342-354</pages><issn>0022-3042</issn><issn>1471-4159</issn><eissn>1471-4159</eissn><abstract>Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre‐ and post‐synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single‐nucleus RNA sequencing (snRNA‐seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ‐constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative β‐catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where β‐catenin serves as a structural protein to organize the membrane‐anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where β‐catenin serves as a transcriptional coactivator in Wnt/β‐catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA‐seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/β‐catenin signaling that regulate the formation of the embryonic NMJ. Schematic summary of the current snRNA‐seq analysis. The NMJ and MTJ nuclei express Wnt/β‐catenin signaling molecules and are stimulated by Wnt ligands originated from the spinal motor neurons and the perichondrium/chondrocytes, respectively.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37994470</pmid><doi>10.1111/jnc.16013</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1987-458X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2024-04, Vol.168 (4), p.342-354
issn 0022-3042
1471-4159
1471-4159
language eng
recordid cdi_proquest_miscellaneous_2892945564
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetylcholine receptors
Animals
beta Catenin - metabolism
Catenin
Chondrocytes
Clustering
Diaphragm
Diaphragms
Embryogenesis
Embryonic Development
Embryonic growth stage
Gene expression
Gene sequencing
Genes
Membrane proteins
Mice
Motor neurons
Muscle, Skeletal - metabolism
Myoblasts
myonucleus
myotendinous junction
Myotubes
Neonates
neuromuscular junction
Neuromuscular Junction - genetics
Neuromuscular Junction - metabolism
Neuromuscular junctions
Neurons
Nuclei (cytology)
Perichondrium
Receptors, Cholinergic - metabolism
RNA, Small Nuclear - metabolism
Skeletal muscle
snRNA
Transcriptome
Transcriptomes
Wnt protein
Wnt signaling
Wnt Signaling Pathway - genetics
β‐catenin
title Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20profile%20of%20subsynaptic%20myonuclei%20at%20the%20neuromuscular%20junction%20in%20embryogenesis&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Ohkawara,%20Bisei&rft.date=2024-04&rft.volume=168&rft.issue=4&rft.spage=342&rft.epage=354&rft.pages=342-354&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/jnc.16013&rft_dat=%3Cproquest_cross%3E3037541683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3037541683&rft_id=info:pmid/37994470&rfr_iscdi=true