Frequency domain identification of Hammerstein models
Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2003-04, Vol.48 (4), p.530-542 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 4 |
container_start_page | 530 |
container_title | IEEE transactions on automatic control |
container_volume | 48 |
creator | BAI, Er-Wei |
description | Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric. |
doi_str_mv | 10.1109/TAC.2003.809803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28928117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1193733</ieee_id><sourcerecordid>28928117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKtnD16KoHjZNpOvzR5LsVYoeKnnELOzkLIfNdke-t-bpQXBg3QuYZjfPOblEXIPdApAi9lmvpgySvlU00JTfkFGIKXOmGT8kowoBZ0VTKtrchPjNrVKCBgRuQz4vcfWHSZl11jfTnyJbe8r72zvu3bSVZOVbRoMscc0bboS63hLripbR7w7vWPyuXzdLFbZ-uPtfTFfZ04I1mcasbKqlKWTAgUrlKIWZGktCNSaO2q_ylyBoiiZ4k6ic6ywMrmxWrm84GPyfNTdhS5dGXvT-Oiwrm2L3T4appMlgPwMMNdC6HMUOc15qjF5-RcElQNTIARN6OMfdNvtQ5s-xmgtgDHOhwtnR8iFLsaAldkF39hwMEDNEKBJAZohQHMMMG08nWRtdLaugm2dj79rQuc0FyxxD0fOI-LvGAo-GPkBfwqhHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884122337</pqid></control><display><type>article</type><title>Frequency domain identification of Hammerstein models</title><source>IEEE Electronic Library (IEL)</source><creator>BAI, Er-Wei</creator><creatorcontrib>BAI, Er-Wei</creatorcontrib><description>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.809803</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Exact sciences and technology ; Frequency domain analysis ; Frequency domains ; Harmonics ; Iterative methods ; Least squares methods ; Linear systems ; Modelling and identification ; Noise ; Noise generators ; Nonlinear systems ; Nonlinearity ; Parameter estimation ; Resonant frequency ; System identification</subject><ispartof>IEEE transactions on automatic control, 2003-04, Vol.48 (4), p.530-542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</citedby><cites>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1193733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1193733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14870742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAI, Er-Wei</creatorcontrib><title>Frequency domain identification of Hammerstein models</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Frequency domain analysis</subject><subject>Frequency domains</subject><subject>Harmonics</subject><subject>Iterative methods</subject><subject>Least squares methods</subject><subject>Linear systems</subject><subject>Modelling and identification</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Resonant frequency</subject><subject>System identification</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1LAzEQxYMoWKtnD16KoHjZNpOvzR5LsVYoeKnnELOzkLIfNdke-t-bpQXBg3QuYZjfPOblEXIPdApAi9lmvpgySvlU00JTfkFGIKXOmGT8kowoBZ0VTKtrchPjNrVKCBgRuQz4vcfWHSZl11jfTnyJbe8r72zvu3bSVZOVbRoMscc0bboS63hLripbR7w7vWPyuXzdLFbZ-uPtfTFfZ04I1mcasbKqlKWTAgUrlKIWZGktCNSaO2q_ylyBoiiZ4k6ic6ywMrmxWrm84GPyfNTdhS5dGXvT-Oiwrm2L3T4appMlgPwMMNdC6HMUOc15qjF5-RcElQNTIARN6OMfdNvtQ5s-xmgtgDHOhwtnR8iFLsaAldkF39hwMEDNEKBJAZohQHMMMG08nWRtdLaugm2dj79rQuc0FyxxD0fOI-LvGAo-GPkBfwqhHg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>BAI, Er-Wei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20030401</creationdate><title>Frequency domain identification of Hammerstein models</title><author>BAI, Er-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Frequency domain analysis</topic><topic>Frequency domains</topic><topic>Harmonics</topic><topic>Iterative methods</topic><topic>Least squares methods</topic><topic>Linear systems</topic><topic>Modelling and identification</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Resonant frequency</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAI, Er-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BAI, Er-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency domain identification of Hammerstein models</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>48</volume><issue>4</issue><spage>530</spage><epage>542</epage><pages>530-542</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.809803</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2003-04, Vol.48 (4), p.530-542 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28928117 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Automatic control Computer science control theory systems Control theory. Systems Convergence Exact sciences and technology Frequency domain analysis Frequency domains Harmonics Iterative methods Least squares methods Linear systems Modelling and identification Noise Noise generators Nonlinear systems Nonlinearity Parameter estimation Resonant frequency System identification |
title | Frequency domain identification of Hammerstein models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20domain%20identification%20of%20Hammerstein%20models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=BAI,%20Er-Wei&rft.date=2003-04-01&rft.volume=48&rft.issue=4&rft.spage=530&rft.epage=542&rft.pages=530-542&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.809803&rft_dat=%3Cproquest_RIE%3E28928117%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884122337&rft_id=info:pmid/&rft_ieee_id=1193733&rfr_iscdi=true |