Frequency domain identification of Hammerstein models

Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2003-04, Vol.48 (4), p.530-542
1. Verfasser: BAI, Er-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 4
container_start_page 530
container_title IEEE transactions on automatic control
container_volume 48
creator BAI, Er-Wei
description Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.
doi_str_mv 10.1109/TAC.2003.809803
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28928117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1193733</ieee_id><sourcerecordid>28928117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoWKtnD16KoHjZNpOvzR5LsVYoeKnnELOzkLIfNdke-t-bpQXBg3QuYZjfPOblEXIPdApAi9lmvpgySvlU00JTfkFGIKXOmGT8kowoBZ0VTKtrchPjNrVKCBgRuQz4vcfWHSZl11jfTnyJbe8r72zvu3bSVZOVbRoMscc0bboS63hLripbR7w7vWPyuXzdLFbZ-uPtfTFfZ04I1mcasbKqlKWTAgUrlKIWZGktCNSaO2q_ylyBoiiZ4k6ic6ywMrmxWrm84GPyfNTdhS5dGXvT-Oiwrm2L3T4appMlgPwMMNdC6HMUOc15qjF5-RcElQNTIARN6OMfdNvtQ5s-xmgtgDHOhwtnR8iFLsaAldkF39hwMEDNEKBJAZohQHMMMG08nWRtdLaugm2dj79rQuc0FyxxD0fOI-LvGAo-GPkBfwqhHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884122337</pqid></control><display><type>article</type><title>Frequency domain identification of Hammerstein models</title><source>IEEE Electronic Library (IEL)</source><creator>BAI, Er-Wei</creator><creatorcontrib>BAI, Er-Wei</creatorcontrib><description>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2003.809803</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control theory. Systems ; Convergence ; Exact sciences and technology ; Frequency domain analysis ; Frequency domains ; Harmonics ; Iterative methods ; Least squares methods ; Linear systems ; Modelling and identification ; Noise ; Noise generators ; Nonlinear systems ; Nonlinearity ; Parameter estimation ; Resonant frequency ; System identification</subject><ispartof>IEEE transactions on automatic control, 2003-04, Vol.48 (4), p.530-542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</citedby><cites>FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1193733$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1193733$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14870742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAI, Er-Wei</creatorcontrib><title>Frequency domain identification of Hammerstein models</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Frequency domain analysis</subject><subject>Frequency domains</subject><subject>Harmonics</subject><subject>Iterative methods</subject><subject>Least squares methods</subject><subject>Linear systems</subject><subject>Modelling and identification</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Resonant frequency</subject><subject>System identification</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1LAzEQxYMoWKtnD16KoHjZNpOvzR5LsVYoeKnnELOzkLIfNdke-t-bpQXBg3QuYZjfPOblEXIPdApAi9lmvpgySvlU00JTfkFGIKXOmGT8kowoBZ0VTKtrchPjNrVKCBgRuQz4vcfWHSZl11jfTnyJbe8r72zvu3bSVZOVbRoMscc0bboS63hLripbR7w7vWPyuXzdLFbZ-uPtfTFfZ04I1mcasbKqlKWTAgUrlKIWZGktCNSaO2q_ylyBoiiZ4k6ic6ywMrmxWrm84GPyfNTdhS5dGXvT-Oiwrm2L3T4appMlgPwMMNdC6HMUOc15qjF5-RcElQNTIARN6OMfdNvtQ5s-xmgtgDHOhwtnR8iFLsaAldkF39hwMEDNEKBJAZohQHMMMG08nWRtdLaugm2dj79rQuc0FyxxD0fOI-LvGAo-GPkBfwqhHg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>BAI, Er-Wei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>H8D</scope></search><sort><creationdate>20030401</creationdate><title>Frequency domain identification of Hammerstein models</title><author>BAI, Er-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8eefa6d5dc54e429660a15daa14e883c0abd76160e5263c5ecc29a5109a86c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Frequency domain analysis</topic><topic>Frequency domains</topic><topic>Harmonics</topic><topic>Iterative methods</topic><topic>Least squares methods</topic><topic>Linear systems</topic><topic>Modelling and identification</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Resonant frequency</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAI, Er-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BAI, Er-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency domain identification of Hammerstein models</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2003-04-01</date><risdate>2003</risdate><volume>48</volume><issue>4</issue><spage>530</spage><epage>542</epage><pages>530-542</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Discusses Hammerstein model identification in the frequency domain using sampled input-output data. By exploring the fundamental frequency and harmonics generated by the unknown nonlinearity, we propose a frequency domain approach and show its convergence for both the linear and nonlinear subsystems in the presence of noise. No a priori knowledge of the structure of the nonlinearity is required and the linear part can be nonparametric.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2003.809803</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2003-04, Vol.48 (4), p.530-542
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28928117
source IEEE Electronic Library (IEL)
subjects Applied sciences
Automatic control
Computer science
control theory
systems
Control theory. Systems
Convergence
Exact sciences and technology
Frequency domain analysis
Frequency domains
Harmonics
Iterative methods
Least squares methods
Linear systems
Modelling and identification
Noise
Noise generators
Nonlinear systems
Nonlinearity
Parameter estimation
Resonant frequency
System identification
title Frequency domain identification of Hammerstein models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20domain%20identification%20of%20Hammerstein%20models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=BAI,%20Er-Wei&rft.date=2003-04-01&rft.volume=48&rft.issue=4&rft.spage=530&rft.epage=542&rft.pages=530-542&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2003.809803&rft_dat=%3Cproquest_RIE%3E28928117%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884122337&rft_id=info:pmid/&rft_ieee_id=1193733&rfr_iscdi=true