Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods

The main objective of this study is to evaluate the feasibility of deriving a land-cover map of the state of Mato Grosso, Brazil, for the year 2000, using data from the 1 km SPOT-4 VEGETATION (VGT) sensor. For this purpose we used a VGT temporal series of 12 monthly composite images, which were furt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photogrammetric engineering and remote sensing 2006-08, Vol.72 (8), p.897-910
Hauptverfasser: Carreiras, João M.B., Pereira, José M.C., Shimabukuro, Yosio E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 910
container_issue 8
container_start_page 897
container_title Photogrammetric engineering and remote sensing
container_volume 72
creator Carreiras, João M.B.
Pereira, José M.C.
Shimabukuro, Yosio E.
description The main objective of this study is to evaluate the feasibility of deriving a land-cover map of the state of Mato Grosso, Brazil, for the year 2000, using data from the 1 km SPOT-4 VEGETATION (VGT) sensor. For this purpose we used a VGT temporal series of 12 monthly composite images, which were further transformed to physical-meaningful fraction images of vegetation, soil, and shade. Classification of fraction images was implemented using several recent machine learning developments, namely, filtering input training data and probability bagging in a classification tree approach.A 10-fold cross validation accuracy assessment indicates that filtering and probability bagging are effective at increasing overall and class-specific accuracy. Overall accuracy and mean probability of class membership were 0.88 and 0.80, respectively. The map of probability of class membership indicates that the larger errors are associated with cerrado savanna and semi-deciduous forest.
doi_str_mv 10.14358/PERS.72.8.897
format Article
fullrecord <record><control><sourceid>proquest_ingen</sourceid><recordid>TN_cdi_proquest_miscellaneous_28926788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>asprs/pers/2006/00000072/00000008/art00001</ingid><sourcerecordid>28801432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-5af5a2e325fa52ebfc882d4a5bec43e0333a33d8c2e9a2609cf342af00d4b3673</originalsourceid><addsrcrecordid>eNqNkcFv0zAUhyMEEmVw5ZwL3FLs5yR2jlvZYFKnTmzjar06L62n1Am2O4n-9ThkEqdJ-GBb9vc-W--XZR85W_JSVOrL7eWPu6WEpVqqRr7KFiBkWSgmm9fZgrGmKTjn8DZ7F8IjY4JXXC6ysEbXFmZ4Ip_f4Dhat8uty-Oe8guPJ9tbdPn5AU-Dyx_CdHt3u7kvyvwn7ShitOn8K0bMkyYJzN46yteE3k3sqscQbGfNDN5Q3A9teJ-96bAP9OF5Pcseri7vV9-L9ebb9ep8XZiqVrGosKsQSEDVYQW07YxS0JZYbcmUgpgQAoVolQFqEGrWmE6UgB1jbbkVtRRn2efZO_rh15FC1AcbDPU9OhqOQYNqoJZK_QeoWGoxJHA5g8YPIXjq9OjtAf1vzZn-G4KeQtAStNIphFTw6dmMwWDfeXTGhn9VMjFcTtxm5lLXyEXUj8PRu9QcbY3GMPqgpwSnAPWTBKc0MOBMQXoWRK1b6vDYRx3R691JB56MFy8YZ91IaQLG6iSeRvryvGFKo4_Thos_oXC3Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28801432</pqid></control><display><type>article</type><title>Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods</title><source>IngentaConnect</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carreiras, João M.B. ; Pereira, José M.C. ; Shimabukuro, Yosio E.</creator><creatorcontrib>Carreiras, João M.B. ; Pereira, José M.C. ; Shimabukuro, Yosio E.</creatorcontrib><description>The main objective of this study is to evaluate the feasibility of deriving a land-cover map of the state of Mato Grosso, Brazil, for the year 2000, using data from the 1 km SPOT-4 VEGETATION (VGT) sensor. For this purpose we used a VGT temporal series of 12 monthly composite images, which were further transformed to physical-meaningful fraction images of vegetation, soil, and shade. Classification of fraction images was implemented using several recent machine learning developments, namely, filtering input training data and probability bagging in a classification tree approach.A 10-fold cross validation accuracy assessment indicates that filtering and probability bagging are effective at increasing overall and class-specific accuracy. Overall accuracy and mean probability of class membership were 0.88 and 0.80, respectively. The map of probability of class membership indicates that the larger errors are associated with cerrado savanna and semi-deciduous forest.</description><identifier>ISSN: 0099-1112</identifier><identifier>EISSN: 2374-8079</identifier><identifier>DOI: 10.14358/PERS.72.8.897</identifier><identifier>CODEN: PERSDV</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Photogrammetry and Remote Sensing</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>Photogrammetric engineering and remote sensing, 2006-08, Vol.72 (8), p.897-910</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-5af5a2e325fa52ebfc882d4a5bec43e0333a33d8c2e9a2609cf342af00d4b3673</citedby><cites>FETCH-LOGICAL-c568t-5af5a2e325fa52ebfc882d4a5bec43e0333a33d8c2e9a2609cf342af00d4b3673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>289,314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17973177$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carreiras, João M.B.</creatorcontrib><creatorcontrib>Pereira, José M.C.</creatorcontrib><creatorcontrib>Shimabukuro, Yosio E.</creatorcontrib><title>Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods</title><title>Photogrammetric engineering and remote sensing</title><description>The main objective of this study is to evaluate the feasibility of deriving a land-cover map of the state of Mato Grosso, Brazil, for the year 2000, using data from the 1 km SPOT-4 VEGETATION (VGT) sensor. For this purpose we used a VGT temporal series of 12 monthly composite images, which were further transformed to physical-meaningful fraction images of vegetation, soil, and shade. Classification of fraction images was implemented using several recent machine learning developments, namely, filtering input training data and probability bagging in a classification tree approach.A 10-fold cross validation accuracy assessment indicates that filtering and probability bagging are effective at increasing overall and class-specific accuracy. Overall accuracy and mean probability of class membership were 0.88 and 0.80, respectively. The map of probability of class membership indicates that the larger errors are associated with cerrado savanna and semi-deciduous forest.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0099-1112</issn><issn>2374-8079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkcFv0zAUhyMEEmVw5ZwL3FLs5yR2jlvZYFKnTmzjar06L62n1Am2O4n-9ThkEqdJ-GBb9vc-W--XZR85W_JSVOrL7eWPu6WEpVqqRr7KFiBkWSgmm9fZgrGmKTjn8DZ7F8IjY4JXXC6ysEbXFmZ4Ip_f4Dhat8uty-Oe8guPJ9tbdPn5AU-Dyx_CdHt3u7kvyvwn7ShitOn8K0bMkyYJzN46yteE3k3sqscQbGfNDN5Q3A9teJ-96bAP9OF5Pcseri7vV9-L9ebb9ep8XZiqVrGosKsQSEDVYQW07YxS0JZYbcmUgpgQAoVolQFqEGrWmE6UgB1jbbkVtRRn2efZO_rh15FC1AcbDPU9OhqOQYNqoJZK_QeoWGoxJHA5g8YPIXjq9OjtAf1vzZn-G4KeQtAStNIphFTw6dmMwWDfeXTGhn9VMjFcTtxm5lLXyEXUj8PRu9QcbY3GMPqgpwSnAPWTBKc0MOBMQXoWRK1b6vDYRx3R691JB56MFy8YZ91IaQLG6iSeRvryvGFKo4_Thos_oXC3Sg</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Carreiras, João M.B.</creator><creator>Pereira, José M.C.</creator><creator>Shimabukuro, Yosio E.</creator><general>American Society for Photogrammetry and Remote Sensing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060801</creationdate><title>Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods</title><author>Carreiras, João M.B. ; Pereira, José M.C. ; Shimabukuro, Yosio E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-5af5a2e325fa52ebfc882d4a5bec43e0333a33d8c2e9a2609cf342af00d4b3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carreiras, João M.B.</creatorcontrib><creatorcontrib>Pereira, José M.C.</creatorcontrib><creatorcontrib>Shimabukuro, Yosio E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Photogrammetric engineering and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carreiras, João M.B.</au><au>Pereira, José M.C.</au><au>Shimabukuro, Yosio E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods</atitle><jtitle>Photogrammetric engineering and remote sensing</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>72</volume><issue>8</issue><spage>897</spage><epage>910</epage><pages>897-910</pages><issn>0099-1112</issn><eissn>2374-8079</eissn><coden>PERSDV</coden><abstract>The main objective of this study is to evaluate the feasibility of deriving a land-cover map of the state of Mato Grosso, Brazil, for the year 2000, using data from the 1 km SPOT-4 VEGETATION (VGT) sensor. For this purpose we used a VGT temporal series of 12 monthly composite images, which were further transformed to physical-meaningful fraction images of vegetation, soil, and shade. Classification of fraction images was implemented using several recent machine learning developments, namely, filtering input training data and probability bagging in a classification tree approach.A 10-fold cross validation accuracy assessment indicates that filtering and probability bagging are effective at increasing overall and class-specific accuracy. Overall accuracy and mean probability of class membership were 0.88 and 0.80, respectively. The map of probability of class membership indicates that the larger errors are associated with cerrado savanna and semi-deciduous forest.</abstract><cop>Bethesda, MD</cop><pub>American Society for Photogrammetry and Remote Sensing</pub><doi>10.14358/PERS.72.8.897</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-1112
ispartof Photogrammetric engineering and remote sensing, 2006-08, Vol.72 (8), p.897-910
issn 0099-1112
2374-8079
language eng
recordid cdi_proquest_miscellaneous_28926788
source IngentaConnect; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
Teledetection and vegetation maps
title Land-cover Mapping in the Brazilian Amazon Using SPOT-4 Vegetation Data and Machine Learning Classification Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ingen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Land-cover%20Mapping%20in%20the%20Brazilian%20Amazon%20Using%20SPOT-4%20Vegetation%20Data%20and%20Machine%20Learning%20Classification%20Methods&rft.jtitle=Photogrammetric%20engineering%20and%20remote%20sensing&rft.au=Carreiras,%20Jo%C3%A3o%20M.B.&rft.date=2006-08-01&rft.volume=72&rft.issue=8&rft.spage=897&rft.epage=910&rft.pages=897-910&rft.issn=0099-1112&rft.eissn=2374-8079&rft.coden=PERSDV&rft_id=info:doi/10.14358/PERS.72.8.897&rft_dat=%3Cproquest_ingen%3E28801432%3C/proquest_ingen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28801432&rft_id=info:pmid/&rft_ingid=asprs/pers/2006/00000072/00000008/art00001&rfr_iscdi=true