A Level Algorithm for Preemptive Scheduling
Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for ind...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 1977-01, Vol.24 (1), p.32-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | Journal of the ACM |
container_volume | 24 |
creator | Horvath, Edward C Lam, Shui Sethi, Ravi |
description | Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on
m
processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√
m
is an upper bound over all possible processor speeds and that the 1.23√
m
bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√
m
can be approached asymptotically. |
doi_str_mv | 10.1145/321992.321995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28923929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808070866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEeX7rsSQTq-fDXNsgyOCgUFFdyVNH2ZqbTTmnQG_PdW69rV4cJ5j8sl5JLCklIhbzmjWrPlL-QRiaiUKlFcvh-TCABEIgWlp-QshI8pAgMVkZs8LvCAbZy3m94347aLXe_jZ4_YDWNzwPjFbrHet81uc05OnGkDXvxxQd7Wd6-rh6R4un9c5UViuRZjwjWFCtFqacHRqgak3GXGiTRVIhO1qDS3Vc0NCFSa6amhgdqgrVIuVe34glzNfwfff-4xjGXXBItta3bY70PJMs34dDiJ1_-KNIMMFGRpOqnJrFrfh-DRlYNvOuO_Sgrlz3rlvN4Myb8BkSlgMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808070866</pqid></control><display><type>article</type><title>A Level Algorithm for Preemptive Scheduling</title><source>ACM Digital Library</source><creator>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</creator><creatorcontrib>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</creatorcontrib><description>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on
m
processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√
m
is an upper bound over all possible processor speeds and that the 1.23√
m
bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√
m
can be approached asymptotically.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/321992.321995</identifier><language>eng</language><subject>Algorithms ; Asymptotic properties ; Optimization ; Preempting ; Processors ; Schedules ; Tasks ; Upper bounds</subject><ispartof>Journal of the ACM, 1977-01, Vol.24 (1), p.32-43</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</citedby><cites>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Horvath, Edward C</creatorcontrib><creatorcontrib>Lam, Shui</creatorcontrib><creatorcontrib>Sethi, Ravi</creatorcontrib><title>A Level Algorithm for Preemptive Scheduling</title><title>Journal of the ACM</title><description>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on
m
processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√
m
is an upper bound over all possible processor speeds and that the 1.23√
m
bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√
m
can be approached asymptotically.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Optimization</subject><subject>Preempting</subject><subject>Processors</subject><subject>Schedules</subject><subject>Tasks</subject><subject>Upper bounds</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEeX7rsSQTq-fDXNsgyOCgUFFdyVNH2ZqbTTmnQG_PdW69rV4cJ5j8sl5JLCklIhbzmjWrPlL-QRiaiUKlFcvh-TCABEIgWlp-QshI8pAgMVkZs8LvCAbZy3m94347aLXe_jZ4_YDWNzwPjFbrHet81uc05OnGkDXvxxQd7Wd6-rh6R4un9c5UViuRZjwjWFCtFqacHRqgak3GXGiTRVIhO1qDS3Vc0NCFSa6amhgdqgrVIuVe34glzNfwfff-4xjGXXBItta3bY70PJMs34dDiJ1_-KNIMMFGRpOqnJrFrfh-DRlYNvOuO_Sgrlz3rlvN4Myb8BkSlgMw</recordid><startdate>19770101</startdate><enddate>19770101</enddate><creator>Horvath, Edward C</creator><creator>Lam, Shui</creator><creator>Sethi, Ravi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19770101</creationdate><title>A Level Algorithm for Preemptive Scheduling</title><author>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Optimization</topic><topic>Preempting</topic><topic>Processors</topic><topic>Schedules</topic><topic>Tasks</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horvath, Edward C</creatorcontrib><creatorcontrib>Lam, Shui</creatorcontrib><creatorcontrib>Sethi, Ravi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horvath, Edward C</au><au>Lam, Shui</au><au>Sethi, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Level Algorithm for Preemptive Scheduling</atitle><jtitle>Journal of the ACM</jtitle><date>1977-01-01</date><risdate>1977</risdate><volume>24</volume><issue>1</issue><spage>32</spage><epage>43</epage><pages>32-43</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on
m
processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√
m
is an upper bound over all possible processor speeds and that the 1.23√
m
bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√
m
can be approached asymptotically.</abstract><doi>10.1145/321992.321995</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1977-01, Vol.24 (1), p.32-43 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28923929 |
source | ACM Digital Library |
subjects | Algorithms Asymptotic properties Optimization Preempting Processors Schedules Tasks Upper bounds |
title | A Level Algorithm for Preemptive Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Level%20Algorithm%20for%20Preemptive%20Scheduling&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Horvath,%20Edward%20C&rft.date=1977-01-01&rft.volume=24&rft.issue=1&rft.spage=32&rft.epage=43&rft.pages=32-43&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/321992.321995&rft_dat=%3Cproquest_cross%3E1808070866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808070866&rft_id=info:pmid/&rfr_iscdi=true |