A Level Algorithm for Preemptive Scheduling

Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1977-01, Vol.24 (1), p.32-43
Hauptverfasser: Horvath, Edward C, Lam, Shui, Sethi, Ravi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 32
container_title Journal of the ACM
container_volume 24
creator Horvath, Edward C
Lam, Shui
Sethi, Ravi
description Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on m processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√ m is an upper bound over all possible processor speeds and that the 1.23√ m bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√ m can be approached asymptotically.
doi_str_mv 10.1145/321992.321995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28923929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808070866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEeX7rsSQTq-fDXNsgyOCgUFFdyVNH2ZqbTTmnQG_PdW69rV4cJ5j8sl5JLCklIhbzmjWrPlL-QRiaiUKlFcvh-TCABEIgWlp-QshI8pAgMVkZs8LvCAbZy3m94347aLXe_jZ4_YDWNzwPjFbrHet81uc05OnGkDXvxxQd7Wd6-rh6R4un9c5UViuRZjwjWFCtFqacHRqgak3GXGiTRVIhO1qDS3Vc0NCFSa6amhgdqgrVIuVe34glzNfwfff-4xjGXXBItta3bY70PJMs34dDiJ1_-KNIMMFGRpOqnJrFrfh-DRlYNvOuO_Sgrlz3rlvN4Myb8BkSlgMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808070866</pqid></control><display><type>article</type><title>A Level Algorithm for Preemptive Scheduling</title><source>ACM Digital Library</source><creator>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</creator><creatorcontrib>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</creatorcontrib><description>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on m processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√ m is an upper bound over all possible processor speeds and that the 1.23√ m bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√ m can be approached asymptotically.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/321992.321995</identifier><language>eng</language><subject>Algorithms ; Asymptotic properties ; Optimization ; Preempting ; Processors ; Schedules ; Tasks ; Upper bounds</subject><ispartof>Journal of the ACM, 1977-01, Vol.24 (1), p.32-43</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</citedby><cites>FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Horvath, Edward C</creatorcontrib><creatorcontrib>Lam, Shui</creatorcontrib><creatorcontrib>Sethi, Ravi</creatorcontrib><title>A Level Algorithm for Preemptive Scheduling</title><title>Journal of the ACM</title><description>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on m processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√ m is an upper bound over all possible processor speeds and that the 1.23√ m bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√ m can be approached asymptotically.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Optimization</subject><subject>Preempting</subject><subject>Processors</subject><subject>Schedules</subject><subject>Tasks</subject><subject>Upper bounds</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEeX7rsSQTq-fDXNsgyOCgUFFdyVNH2ZqbTTmnQG_PdW69rV4cJ5j8sl5JLCklIhbzmjWrPlL-QRiaiUKlFcvh-TCABEIgWlp-QshI8pAgMVkZs8LvCAbZy3m94347aLXe_jZ4_YDWNzwPjFbrHet81uc05OnGkDXvxxQd7Wd6-rh6R4un9c5UViuRZjwjWFCtFqacHRqgak3GXGiTRVIhO1qDS3Vc0NCFSa6amhgdqgrVIuVe34glzNfwfff-4xjGXXBItta3bY70PJMs34dDiJ1_-KNIMMFGRpOqnJrFrfh-DRlYNvOuO_Sgrlz3rlvN4Myb8BkSlgMw</recordid><startdate>19770101</startdate><enddate>19770101</enddate><creator>Horvath, Edward C</creator><creator>Lam, Shui</creator><creator>Sethi, Ravi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19770101</creationdate><title>A Level Algorithm for Preemptive Scheduling</title><author>Horvath, Edward C ; Lam, Shui ; Sethi, Ravi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-3910beec95c0f1bd0e13f8af4667484d4b93cbd3a04e7929735a0daecb6357df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Optimization</topic><topic>Preempting</topic><topic>Processors</topic><topic>Schedules</topic><topic>Tasks</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horvath, Edward C</creatorcontrib><creatorcontrib>Lam, Shui</creatorcontrib><creatorcontrib>Sethi, Ravi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horvath, Edward C</au><au>Lam, Shui</au><au>Sethi, Ravi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Level Algorithm for Preemptive Scheduling</atitle><jtitle>Journal of the ACM</jtitle><date>1977-01-01</date><risdate>1977</risdate><volume>24</volume><issue>1</issue><spage>32</spage><epage>43</epage><pages>32-43</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>Muntz and Coffman give a level algorithm that constructs optimal preemptive schedules on identical processors when the task system is a tree or when there are only two processors available. Their algorithm is adapted here to handle processors of different speeds. The new algorithm is optimal for independent tasks on any number of processors and for arbitrary task systems on two processors, but not on three or more processors, even for trees. By taking the algorithm as a heuristic on m processors and using the ratio of the lengths of the constructed and optimal schedules as a measure, an upper bound on its performance is derived in terms of the speeds of the processors. It is further shown that 1.23√ m is an upper bound over all possible processor speeds and that the 1.23√ m bound can be improved at most by a constant factor, by giving an example of a system for which the bound 0.35√ m can be approached asymptotically.</abstract><doi>10.1145/321992.321995</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1977-01, Vol.24 (1), p.32-43
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_28923929
source ACM Digital Library
subjects Algorithms
Asymptotic properties
Optimization
Preempting
Processors
Schedules
Tasks
Upper bounds
title A Level Algorithm for Preemptive Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Level%20Algorithm%20for%20Preemptive%20Scheduling&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Horvath,%20Edward%20C&rft.date=1977-01-01&rft.volume=24&rft.issue=1&rft.spage=32&rft.epage=43&rft.pages=32-43&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/321992.321995&rft_dat=%3Cproquest_cross%3E1808070866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808070866&rft_id=info:pmid/&rfr_iscdi=true