Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton

Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano‐electromechanical systems face c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2305121-n/a
Hauptverfasser: Shang, Xinggang, Wang, Ning, Cao, Simin, Chen, Hehao, Fan, Dixia, Zhou, Nanjia, Qiu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2305121
container_title Advanced materials (Weinheim)
container_volume 36
creator Shang, Xinggang
Wang, Ning
Cao, Simin
Chen, Hehao
Fan, Dixia
Zhou, Nanjia
Qiu, Min
description Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano‐electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber‐integrated force sensors using spring‐composed Fabry‐Perot cavities. It calibrates these microscale devices employing varied‐diameter μ$\umu$ m‐scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber‐based nanomechanical probes so far. It also measured the non‐linear airflow force distributions produced from a nozzle with an orifice of 2 μ$\umu$ m, which matches well with the full‐sized simulations. With further customization of their geometries and materials, it anticipates the easy‐to‐use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro‐manipulations, and biological sensing. A fiber‐integrated force probe using a spring FP cavity for general‐uses is proposed. The force‐sensitivity and resolution reach (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, representing the highest precisions among all fiber‐based nanomechanical probes. Typically, it uses the sensor to explore the micro‐scale nonlinear problems in fluid mechanics. It anticipates the easy‐to‐use force probe will generate significant impacts for accurate force‐detection.
doi_str_mv 10.1002/adma.202305121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892272288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912957312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-46aff86c22a52c207844224f97ce90a93edf16d03ef99f3d7eb0a410b1f5e9533</originalsourceid><addsrcrecordid>eNqFkT1vUzEUhi0EomlhZUSWWFgS7OP75TFKSFupiEgts-Xre5y6yrWDfS9RNmYmfiO_BEcpRWJhsmU_76Njv4S84WzGGYMPuuv1DBgIVnLgz8iEl8CnBZPlczJhUpRTWRXNGTlP6YExJitWvSRnopZNyetqQn6sXIvx1_ef137ATdQDdnQVokF6iz6FSMfk_IaKJV1H54-3t7u82eTEIvS7kI68buMhH6wxhoEu9Dc3OEx074Z7qumV29znMBqXXPB0GfaeDoHeZT0Nlq6dCR73Q_CvyAurtwlfP64X5Mvq493ianrz-fJ6Mb-ZGlGL_LZKW9tUBkCXYIDVTVEAFFbWBiXTUmBnedUxgVZKK7oaW6YLzlpuS5SlEBfk_cm7i-HriGlQvUsGt1vtMYxJQSMBaoCmyei7f9CHMEafp1MgOcgyDwSZmp0oE0NKEa3KX9TreFCcqWNL6tiSemopB94-ase2x-4J_1NLBuQJ2LstHv6jU_Plp_lf-W9QRKEu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912957312</pqid></control><display><type>article</type><title>Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shang, Xinggang ; Wang, Ning ; Cao, Simin ; Chen, Hehao ; Fan, Dixia ; Zhou, Nanjia ; Qiu, Min</creator><creatorcontrib>Shang, Xinggang ; Wang, Ning ; Cao, Simin ; Chen, Hehao ; Fan, Dixia ; Zhou, Nanjia ; Qiu, Min</creatorcontrib><description>Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano‐electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber‐integrated force sensors using spring‐composed Fabry‐Perot cavities. It calibrates these microscale devices employing varied‐diameter μ$\umu$ m‐scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber‐based nanomechanical probes so far. It also measured the non‐linear airflow force distributions produced from a nozzle with an orifice of 2 μ$\umu$ m, which matches well with the full‐sized simulations. With further customization of their geometries and materials, it anticipates the easy‐to‐use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro‐manipulations, and biological sensing. A fiber‐integrated force probe using a spring FP cavity for general‐uses is proposed. The force‐sensitivity and resolution reach (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, representing the highest precisions among all fiber‐based nanomechanical probes. Typically, it uses the sensor to explore the micro‐scale nonlinear problems in fluid mechanics. It anticipates the easy‐to‐use force probe will generate significant impacts for accurate force‐detection.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305121</identifier><identifier>PMID: 37985176</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Air flow ; Diameters ; Electromagnetic compatibility ; Force measurement ; force sensor ; optical fiber ; Orifices ; piconewton ; Sensors ; spring ; Three dimensional printing</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305121-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-46aff86c22a52c207844224f97ce90a93edf16d03ef99f3d7eb0a410b1f5e9533</citedby><cites>FETCH-LOGICAL-c3731-46aff86c22a52c207844224f97ce90a93edf16d03ef99f3d7eb0a410b1f5e9533</cites><orcidid>0000-0002-4613-5125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202305121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202305121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37985176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Xinggang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Chen, Hehao</creatorcontrib><creatorcontrib>Fan, Dixia</creatorcontrib><creatorcontrib>Zhou, Nanjia</creatorcontrib><creatorcontrib>Qiu, Min</creatorcontrib><title>Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano‐electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber‐integrated force sensors using spring‐composed Fabry‐Perot cavities. It calibrates these microscale devices employing varied‐diameter μ$\umu$ m‐scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber‐based nanomechanical probes so far. It also measured the non‐linear airflow force distributions produced from a nozzle with an orifice of 2 μ$\umu$ m, which matches well with the full‐sized simulations. With further customization of their geometries and materials, it anticipates the easy‐to‐use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro‐manipulations, and biological sensing. A fiber‐integrated force probe using a spring FP cavity for general‐uses is proposed. The force‐sensitivity and resolution reach (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, representing the highest precisions among all fiber‐based nanomechanical probes. Typically, it uses the sensor to explore the micro‐scale nonlinear problems in fluid mechanics. It anticipates the easy‐to‐use force probe will generate significant impacts for accurate force‐detection.</description><subject>Air flow</subject><subject>Diameters</subject><subject>Electromagnetic compatibility</subject><subject>Force measurement</subject><subject>force sensor</subject><subject>optical fiber</subject><subject>Orifices</subject><subject>piconewton</subject><subject>Sensors</subject><subject>spring</subject><subject>Three dimensional printing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vUzEUhi0EomlhZUSWWFgS7OP75TFKSFupiEgts-Xre5y6yrWDfS9RNmYmfiO_BEcpRWJhsmU_76Njv4S84WzGGYMPuuv1DBgIVnLgz8iEl8CnBZPlczJhUpRTWRXNGTlP6YExJitWvSRnopZNyetqQn6sXIvx1_ef137ATdQDdnQVokF6iz6FSMfk_IaKJV1H54-3t7u82eTEIvS7kI68buMhH6wxhoEu9Dc3OEx074Z7qumV29znMBqXXPB0GfaeDoHeZT0Nlq6dCR73Q_CvyAurtwlfP64X5Mvq493ianrz-fJ6Mb-ZGlGL_LZKW9tUBkCXYIDVTVEAFFbWBiXTUmBnedUxgVZKK7oaW6YLzlpuS5SlEBfk_cm7i-HriGlQvUsGt1vtMYxJQSMBaoCmyei7f9CHMEafp1MgOcgyDwSZmp0oE0NKEa3KX9TreFCcqWNL6tiSemopB94-ase2x-4J_1NLBuQJ2LstHv6jU_Plp_lf-W9QRKEu</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shang, Xinggang</creator><creator>Wang, Ning</creator><creator>Cao, Simin</creator><creator>Chen, Hehao</creator><creator>Fan, Dixia</creator><creator>Zhou, Nanjia</creator><creator>Qiu, Min</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4613-5125</orcidid></search><sort><creationdate>20240101</creationdate><title>Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton</title><author>Shang, Xinggang ; Wang, Ning ; Cao, Simin ; Chen, Hehao ; Fan, Dixia ; Zhou, Nanjia ; Qiu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-46aff86c22a52c207844224f97ce90a93edf16d03ef99f3d7eb0a410b1f5e9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air flow</topic><topic>Diameters</topic><topic>Electromagnetic compatibility</topic><topic>Force measurement</topic><topic>force sensor</topic><topic>optical fiber</topic><topic>Orifices</topic><topic>piconewton</topic><topic>Sensors</topic><topic>spring</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xinggang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Cao, Simin</creatorcontrib><creatorcontrib>Chen, Hehao</creatorcontrib><creatorcontrib>Fan, Dixia</creatorcontrib><creatorcontrib>Zhou, Nanjia</creatorcontrib><creatorcontrib>Qiu, Min</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Xinggang</au><au>Wang, Ning</au><au>Cao, Simin</au><au>Chen, Hehao</au><au>Fan, Dixia</au><au>Zhou, Nanjia</au><au>Qiu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2305121</spage><epage>n/a</epage><pages>e2305121-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano‐electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber‐integrated force sensors using spring‐composed Fabry‐Perot cavities. It calibrates these microscale devices employing varied‐diameter μ$\umu$ m‐scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber‐based nanomechanical probes so far. It also measured the non‐linear airflow force distributions produced from a nozzle with an orifice of 2 μ$\umu$ m, which matches well with the full‐sized simulations. With further customization of their geometries and materials, it anticipates the easy‐to‐use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro‐manipulations, and biological sensing. A fiber‐integrated force probe using a spring FP cavity for general‐uses is proposed. The force‐sensitivity and resolution reach (0.436 ± 0.007) nmnN‐1 and (40.0 ± 0.7) pN, respectively, representing the highest precisions among all fiber‐based nanomechanical probes. Typically, it uses the sensor to explore the micro‐scale nonlinear problems in fluid mechanics. It anticipates the easy‐to‐use force probe will generate significant impacts for accurate force‐detection.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37985176</pmid><doi>10.1002/adma.202305121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4613-5125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2305121-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2892272288
source Wiley Online Library Journals Frontfile Complete
subjects Air flow
Diameters
Electromagnetic compatibility
Force measurement
force sensor
optical fiber
Orifices
piconewton
Sensors
spring
Three dimensional printing
title Fiber‐Integrated Force Sensor using 3D Printed Spring‐Composed Fabry‐Perot Cavities with a High Precision Down to Tens of Piconewton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%E2%80%90Integrated%20Force%20Sensor%20using%203D%20Printed%20Spring%E2%80%90Composed%20Fabry%E2%80%90Perot%20Cavities%20with%20a%20High%20Precision%20Down%20to%20Tens%20of%20Piconewton&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shang,%20Xinggang&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2305121&rft.epage=n/a&rft.pages=e2305121-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305121&rft_dat=%3Cproquest_cross%3E2912957312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912957312&rft_id=info:pmid/37985176&rfr_iscdi=true