Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials

We report on the effects of electron–phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-12, Vol.23 (23), p.11013-11018
Hauptverfasser: Mella, José D., Calvo, Hernán L., Foa Torres, Luis E. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11018
container_issue 23
container_start_page 11013
container_title Nano letters
container_volume 23
creator Mella, José D.
Calvo, Hernán L.
Foa Torres, Luis E. F.
description We report on the effects of electron–phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electron–phonon entangled states whose parts can be easily split. We discuss the effect of the chiral atomic motion in the zone boundary phonons leading to this effect. Our findings shed light on how to harness these unconventional states in quantum research.
doi_str_mv 10.1021/acs.nanolett.3c03316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892271910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892271910</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-7f6c34180388d403ca22ac99f78316f29d77a7714a095f5afc5bf5754978e2a43</originalsourceid><addsrcrecordid>eNp9kMtOAjEYhRujEUTfwJhZuhnsbWi7NIhKgtFEdDspnVaHzLTYdmLY-Q6-oU9iCeDS1X875zT9ADhHcIggRldShaGV1jU6xiFRkBA0OgB9VBCYj4TAh389pz1wEsISQihIAY9Bj7C0pBj1wevERmnfGl1lz1FGHbKprTqVxsU6mzRaRe_sz9f307uzzqZj1F6qWKe-ttn80-U3dattSAvZZA8pwdeyCafgyKSiz3Z1AF5uJ_PxfT57vJuOr2e5JJTHnJmRIhRxSDivKCRKYiyVEIbx9BuDRcWYZAxRCUVhCmlUsTAFK6hgXGNJyQBcbnNX3n10OsSyrYPSTSOtdl0oMRcYMyQQTFK6lSrvQvDalCtft9KvSwTLDdEyES33RMsd0WS72L3QLVpd_Zn2CJMAbgUb-9J1PoEI_2f-AjgZhqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892271910</pqid></control><display><type>article</type><title>Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials</title><source>American Chemical Society Journals</source><creator>Mella, José D. ; Calvo, Hernán L. ; Foa Torres, Luis E. F.</creator><creatorcontrib>Mella, José D. ; Calvo, Hernán L. ; Foa Torres, Luis E. F.</creatorcontrib><description>We report on the effects of electron–phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electron–phonon entangled states whose parts can be easily split. We discuss the effect of the chiral atomic motion in the zone boundary phonons leading to this effect. Our findings shed light on how to harness these unconventional states in quantum research.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.3c03316</identifier><identifier>PMID: 37984421</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2023-12, Vol.23 (23), p.11013-11018</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-7f6c34180388d403ca22ac99f78316f29d77a7714a095f5afc5bf5754978e2a43</citedby><cites>FETCH-LOGICAL-a348t-7f6c34180388d403ca22ac99f78316f29d77a7714a095f5afc5bf5754978e2a43</cites><orcidid>0000-0001-9241-9607 ; 0000-0002-6319-9593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.3c03316$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c03316$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37984421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mella, José D.</creatorcontrib><creatorcontrib>Calvo, Hernán L.</creatorcontrib><creatorcontrib>Foa Torres, Luis E. F.</creatorcontrib><title>Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report on the effects of electron–phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electron–phonon entangled states whose parts can be easily split. We discuss the effect of the chiral atomic motion in the zone boundary phonons leading to this effect. Our findings shed light on how to harness these unconventional states in quantum research.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEYhRujEUTfwJhZuhnsbWi7NIhKgtFEdDspnVaHzLTYdmLY-Q6-oU9iCeDS1X875zT9ADhHcIggRldShaGV1jU6xiFRkBA0OgB9VBCYj4TAh389pz1wEsISQihIAY9Bj7C0pBj1wevERmnfGl1lz1FGHbKprTqVxsU6mzRaRe_sz9f307uzzqZj1F6qWKe-ttn80-U3dattSAvZZA8pwdeyCafgyKSiz3Z1AF5uJ_PxfT57vJuOr2e5JJTHnJmRIhRxSDivKCRKYiyVEIbx9BuDRcWYZAxRCUVhCmlUsTAFK6hgXGNJyQBcbnNX3n10OsSyrYPSTSOtdl0oMRcYMyQQTFK6lSrvQvDalCtft9KvSwTLDdEyES33RMsd0WS72L3QLVpd_Zn2CJMAbgUb-9J1PoEI_2f-AjgZhqg</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Mella, José D.</creator><creator>Calvo, Hernán L.</creator><creator>Foa Torres, Luis E. F.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9241-9607</orcidid><orcidid>https://orcid.org/0000-0002-6319-9593</orcidid></search><sort><creationdate>20231213</creationdate><title>Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials</title><author>Mella, José D. ; Calvo, Hernán L. ; Foa Torres, Luis E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-7f6c34180388d403ca22ac99f78316f29d77a7714a095f5afc5bf5754978e2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mella, José D.</creatorcontrib><creatorcontrib>Calvo, Hernán L.</creatorcontrib><creatorcontrib>Foa Torres, Luis E. F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mella, José D.</au><au>Calvo, Hernán L.</au><au>Foa Torres, Luis E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>23</volume><issue>23</issue><spage>11013</spage><epage>11018</epage><pages>11013-11018</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report on the effects of electron–phonon interaction in materials such as graphene, showing that it enables the formation of a gap bridged by unique edge states. These states exhibit a distinctive locking among propagation direction, valley, and phonon mode, allowing for the generation of electron–phonon entangled states whose parts can be easily split. We discuss the effect of the chiral atomic motion in the zone boundary phonons leading to this effect. Our findings shed light on how to harness these unconventional states in quantum research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37984421</pmid><doi>10.1021/acs.nanolett.3c03316</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9241-9607</orcidid><orcidid>https://orcid.org/0000-0002-6319-9593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-12, Vol.23 (23), p.11013-11018
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2892271910
source American Chemical Society Journals
title Entangled States Induced by Electron–Phonon Interaction in Two-Dimensional Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entangled%20States%20Induced%20by%20Electron%E2%80%93Phonon%20Interaction%20in%20Two-Dimensional%20Materials&rft.jtitle=Nano%20letters&rft.au=Mella,%20Jose%CC%81%20D.&rft.date=2023-12-13&rft.volume=23&rft.issue=23&rft.spage=11013&rft.epage=11018&rft.pages=11013-11018&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.3c03316&rft_dat=%3Cproquest_cross%3E2892271910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892271910&rft_id=info:pmid/37984421&rfr_iscdi=true