Bio-based surfactants derived from pectin

Surfactants derived from renewable resources and synthesized using renewable feedstock and sustainable methods have become a major research focus over the past decade in the surfactant industry. This research presents an approach for rapidly converting readily available polysaccharides, like pectin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2024-01, Vol.324, p.121428-121428, Article 121428
Hauptverfasser: Aris, Zarif Farhana Mohd, Sharma, Rashmi, Pelletier, Margery G.H., Barbeau, Anna M., Gaines, Peter C.W., Nagarajan, Ramaswamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surfactants derived from renewable resources and synthesized using renewable feedstock and sustainable methods have become a major research focus over the past decade in the surfactant industry. This research presents an approach for rapidly converting readily available polysaccharides, like pectin derived from fruit waste, into safely biodegradable surface-active polymers. Commercially available pectin was modified with n-alkyl amines having different alkyl chain lengths using potassium carbonate as a catalyst. The effect of pectin molecular weight, alkyl chain length and degree of substitution (DS) on surface-active properties was studied. Surface tension decreased slightly with lowering molecular weight, whereas interfacial tension decreased dramatically. Cytotoxicity evaluations using human dermal fibroblast, HepG2 and Jurkat cells demonstrated that these polysaccharide-based surfactants exhibit lower cytotoxicity compared to the conventional surfactants such as octyl phenol ethoxylates (i.e., Triton™ X-100), and therefore are more environmentally friendly. Biodegradation studies show that all modified pectins are “ultimately biodegradable” except for Pectin-amide C8 (1:10). [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.121428