Drug combinations screening using a Bayesian ranking approach based on dose–response models

Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2024-01, Vol.66 (1), p.e2200332-n/a
Hauptverfasser: Boumendil, Luana, Fontaine, Morgane, Lévy, Vincent, Pacchiardi, Kim, Itzykson, Raphaël, Biard, Lucie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2200332
container_title Biometrical journal
container_volume 66
creator Boumendil, Luana
Fontaine, Morgane
Lévy, Vincent
Pacchiardi, Kim
Itzykson, Raphaël
Biard, Lucie
description Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.
doi_str_mv 10.1002/bimj.202200332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892270874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892270874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</originalsourceid><addsrcrecordid>eNqFkL9uFDEQh60IlBxH2pSRJRqaPWyP139KEggEBdFAGVle72yyl137sLNC1_EOeUOehD0upKChmZFG3_xm9BFywtmKMybeNP24XgkmBGMA4oAseC14JRmoZ2TBQEAFRuoj8qKUNWPMMikOyRFoa6SRdkGu3-XphoY0Nn30932KhZaQEWMfb-hUdtXTM7_F0vtIs493f0abTU4-3NLGF2xpirRNBX_9fMhYNnMG0jG1OJSX5Hnnh4LHj31Jvl28_3r-sbr68uHy_O1VFUCBrSyvFbaWY2dUy7kxrdFdrRQwQGZUrX0wDXShrb0K0kCjkEuNweigLTMBluT1Pnd-6_uE5d6NfQk4DD5imooTxgqhmdFyRl_9g67TlOP8nROWW6i1mA8vyWpPhZxKydi5Te5Hn7eOM7cT73bi3ZP4eeH0MXZqRmyf8L-mZ0DugR_9gNv_xLmzy8-fRA0WfgPNt48f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919357266</pqid></control><display><type>article</type><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</creator><creatorcontrib>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</creatorcontrib><description>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202200332</identifier><identifier>PMID: 37984849</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acute myeloid leukemia ; Antineoplastic Combined Chemotherapy Protocols ; Bayes Theorem ; Bayesian analysis ; Bayesian model ; Biological materials ; Design of experiments ; Dose-Response Relationship, Drug ; dose–response model ; Drug Combinations ; Drug development ; Drug dosages ; Drug resistance ; drug screening ; Drugs ; Experimental design ; Heterogeneity ; Humans ; Leukemia ; Mathematical models ; Neoplasms - drug therapy ; Ranking ; Research Design ; Sample Size</subject><ispartof>Biometrical journal, 2024-01, Vol.66 (1), p.e2200332-n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</cites><orcidid>0000-0002-7767-9483 ; 0000-0003-0660-1264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202200332$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202200332$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37984849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boumendil, Luana</creatorcontrib><creatorcontrib>Fontaine, Morgane</creatorcontrib><creatorcontrib>Lévy, Vincent</creatorcontrib><creatorcontrib>Pacchiardi, Kim</creatorcontrib><creatorcontrib>Itzykson, Raphaël</creatorcontrib><creatorcontrib>Biard, Lucie</creatorcontrib><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</description><subject>Acute myeloid leukemia</subject><subject>Antineoplastic Combined Chemotherapy Protocols</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian model</subject><subject>Biological materials</subject><subject>Design of experiments</subject><subject>Dose-Response Relationship, Drug</subject><subject>dose–response model</subject><subject>Drug Combinations</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>drug screening</subject><subject>Drugs</subject><subject>Experimental design</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Mathematical models</subject><subject>Neoplasms - drug therapy</subject><subject>Ranking</subject><subject>Research Design</subject><subject>Sample Size</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkL9uFDEQh60IlBxH2pSRJRqaPWyP139KEggEBdFAGVle72yyl137sLNC1_EOeUOehD0upKChmZFG3_xm9BFywtmKMybeNP24XgkmBGMA4oAseC14JRmoZ2TBQEAFRuoj8qKUNWPMMikOyRFoa6SRdkGu3-XphoY0Nn30932KhZaQEWMfb-hUdtXTM7_F0vtIs493f0abTU4-3NLGF2xpirRNBX_9fMhYNnMG0jG1OJSX5Hnnh4LHj31Jvl28_3r-sbr68uHy_O1VFUCBrSyvFbaWY2dUy7kxrdFdrRQwQGZUrX0wDXShrb0K0kCjkEuNweigLTMBluT1Pnd-6_uE5d6NfQk4DD5imooTxgqhmdFyRl_9g67TlOP8nROWW6i1mA8vyWpPhZxKydi5Te5Hn7eOM7cT73bi3ZP4eeH0MXZqRmyf8L-mZ0DugR_9gNv_xLmzy8-fRA0WfgPNt48f</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Boumendil, Luana</creator><creator>Fontaine, Morgane</creator><creator>Lévy, Vincent</creator><creator>Pacchiardi, Kim</creator><creator>Itzykson, Raphaël</creator><creator>Biard, Lucie</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7767-9483</orcidid><orcidid>https://orcid.org/0000-0003-0660-1264</orcidid></search><sort><creationdate>202401</creationdate><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><author>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute myeloid leukemia</topic><topic>Antineoplastic Combined Chemotherapy Protocols</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian model</topic><topic>Biological materials</topic><topic>Design of experiments</topic><topic>Dose-Response Relationship, Drug</topic><topic>dose–response model</topic><topic>Drug Combinations</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>drug screening</topic><topic>Drugs</topic><topic>Experimental design</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Mathematical models</topic><topic>Neoplasms - drug therapy</topic><topic>Ranking</topic><topic>Research Design</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boumendil, Luana</creatorcontrib><creatorcontrib>Fontaine, Morgane</creatorcontrib><creatorcontrib>Lévy, Vincent</creatorcontrib><creatorcontrib>Pacchiardi, Kim</creatorcontrib><creatorcontrib>Itzykson, Raphaël</creatorcontrib><creatorcontrib>Biard, Lucie</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boumendil, Luana</au><au>Fontaine, Morgane</au><au>Lévy, Vincent</au><au>Pacchiardi, Kim</au><au>Itzykson, Raphaël</au><au>Biard, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug combinations screening using a Bayesian ranking approach based on dose–response models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>66</volume><issue>1</issue><spage>e2200332</spage><epage>n/a</epage><pages>e2200332-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>37984849</pmid><doi>10.1002/bimj.202200332</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7767-9483</orcidid><orcidid>https://orcid.org/0000-0003-0660-1264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2024-01, Vol.66 (1), p.e2200332-n/a
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2892270874
source MEDLINE; Wiley Journals
subjects Acute myeloid leukemia
Antineoplastic Combined Chemotherapy Protocols
Bayes Theorem
Bayesian analysis
Bayesian model
Biological materials
Design of experiments
Dose-Response Relationship, Drug
dose–response model
Drug Combinations
Drug development
Drug dosages
Drug resistance
drug screening
Drugs
Experimental design
Heterogeneity
Humans
Leukemia
Mathematical models
Neoplasms - drug therapy
Ranking
Research Design
Sample Size
title Drug combinations screening using a Bayesian ranking approach based on dose–response models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20combinations%20screening%20using%20a%20Bayesian%20ranking%20approach%20based%20on%20dose%E2%80%93response%20models&rft.jtitle=Biometrical%20journal&rft.au=Boumendil,%20Luana&rft.date=2024-01&rft.volume=66&rft.issue=1&rft.spage=e2200332&rft.epage=n/a&rft.pages=e2200332-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202200332&rft_dat=%3Cproquest_cross%3E2892270874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919357266&rft_id=info:pmid/37984849&rfr_iscdi=true