Drug combinations screening using a Bayesian ranking approach based on dose–response models
Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2024-01, Vol.66 (1), p.e2200332-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2200332 |
container_title | Biometrical journal |
container_volume | 66 |
creator | Boumendil, Luana Fontaine, Morgane Lévy, Vincent Pacchiardi, Kim Itzykson, Raphaël Biard, Lucie |
description | Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia. |
doi_str_mv | 10.1002/bimj.202200332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892270874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892270874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</originalsourceid><addsrcrecordid>eNqFkL9uFDEQh60IlBxH2pSRJRqaPWyP139KEggEBdFAGVle72yyl137sLNC1_EOeUOehD0upKChmZFG3_xm9BFywtmKMybeNP24XgkmBGMA4oAseC14JRmoZ2TBQEAFRuoj8qKUNWPMMikOyRFoa6SRdkGu3-XphoY0Nn30932KhZaQEWMfb-hUdtXTM7_F0vtIs493f0abTU4-3NLGF2xpirRNBX_9fMhYNnMG0jG1OJSX5Hnnh4LHj31Jvl28_3r-sbr68uHy_O1VFUCBrSyvFbaWY2dUy7kxrdFdrRQwQGZUrX0wDXShrb0K0kCjkEuNweigLTMBluT1Pnd-6_uE5d6NfQk4DD5imooTxgqhmdFyRl_9g67TlOP8nROWW6i1mA8vyWpPhZxKydi5Te5Hn7eOM7cT73bi3ZP4eeH0MXZqRmyf8L-mZ0DugR_9gNv_xLmzy8-fRA0WfgPNt48f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919357266</pqid></control><display><type>article</type><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</creator><creatorcontrib>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</creatorcontrib><description>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202200332</identifier><identifier>PMID: 37984849</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Acute myeloid leukemia ; Antineoplastic Combined Chemotherapy Protocols ; Bayes Theorem ; Bayesian analysis ; Bayesian model ; Biological materials ; Design of experiments ; Dose-Response Relationship, Drug ; dose–response model ; Drug Combinations ; Drug development ; Drug dosages ; Drug resistance ; drug screening ; Drugs ; Experimental design ; Heterogeneity ; Humans ; Leukemia ; Mathematical models ; Neoplasms - drug therapy ; Ranking ; Research Design ; Sample Size</subject><ispartof>Biometrical journal, 2024-01, Vol.66 (1), p.e2200332-n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</cites><orcidid>0000-0002-7767-9483 ; 0000-0003-0660-1264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202200332$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202200332$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37984849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boumendil, Luana</creatorcontrib><creatorcontrib>Fontaine, Morgane</creatorcontrib><creatorcontrib>Lévy, Vincent</creatorcontrib><creatorcontrib>Pacchiardi, Kim</creatorcontrib><creatorcontrib>Itzykson, Raphaël</creatorcontrib><creatorcontrib>Biard, Lucie</creatorcontrib><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</description><subject>Acute myeloid leukemia</subject><subject>Antineoplastic Combined Chemotherapy Protocols</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian model</subject><subject>Biological materials</subject><subject>Design of experiments</subject><subject>Dose-Response Relationship, Drug</subject><subject>dose–response model</subject><subject>Drug Combinations</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>Drug resistance</subject><subject>drug screening</subject><subject>Drugs</subject><subject>Experimental design</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Mathematical models</subject><subject>Neoplasms - drug therapy</subject><subject>Ranking</subject><subject>Research Design</subject><subject>Sample Size</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkL9uFDEQh60IlBxH2pSRJRqaPWyP139KEggEBdFAGVle72yyl137sLNC1_EOeUOehD0upKChmZFG3_xm9BFywtmKMybeNP24XgkmBGMA4oAseC14JRmoZ2TBQEAFRuoj8qKUNWPMMikOyRFoa6SRdkGu3-XphoY0Nn30932KhZaQEWMfb-hUdtXTM7_F0vtIs493f0abTU4-3NLGF2xpirRNBX_9fMhYNnMG0jG1OJSX5Hnnh4LHj31Jvl28_3r-sbr68uHy_O1VFUCBrSyvFbaWY2dUy7kxrdFdrRQwQGZUrX0wDXShrb0K0kCjkEuNweigLTMBluT1Pnd-6_uE5d6NfQk4DD5imooTxgqhmdFyRl_9g67TlOP8nROWW6i1mA8vyWpPhZxKydi5Te5Hn7eOM7cT73bi3ZP4eeH0MXZqRmyf8L-mZ0DugR_9gNv_xLmzy8-fRA0WfgPNt48f</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Boumendil, Luana</creator><creator>Fontaine, Morgane</creator><creator>Lévy, Vincent</creator><creator>Pacchiardi, Kim</creator><creator>Itzykson, Raphaël</creator><creator>Biard, Lucie</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7767-9483</orcidid><orcidid>https://orcid.org/0000-0003-0660-1264</orcidid></search><sort><creationdate>202401</creationdate><title>Drug combinations screening using a Bayesian ranking approach based on dose–response models</title><author>Boumendil, Luana ; Fontaine, Morgane ; Lévy, Vincent ; Pacchiardi, Kim ; Itzykson, Raphaël ; Biard, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3639-9156ed91ef86d1188d87f566303e08657ac8b3fcd5a6c483b6e147ec87c7908c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acute myeloid leukemia</topic><topic>Antineoplastic Combined Chemotherapy Protocols</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian model</topic><topic>Biological materials</topic><topic>Design of experiments</topic><topic>Dose-Response Relationship, Drug</topic><topic>dose–response model</topic><topic>Drug Combinations</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>Drug resistance</topic><topic>drug screening</topic><topic>Drugs</topic><topic>Experimental design</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Mathematical models</topic><topic>Neoplasms - drug therapy</topic><topic>Ranking</topic><topic>Research Design</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boumendil, Luana</creatorcontrib><creatorcontrib>Fontaine, Morgane</creatorcontrib><creatorcontrib>Lévy, Vincent</creatorcontrib><creatorcontrib>Pacchiardi, Kim</creatorcontrib><creatorcontrib>Itzykson, Raphaël</creatorcontrib><creatorcontrib>Biard, Lucie</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boumendil, Luana</au><au>Fontaine, Morgane</au><au>Lévy, Vincent</au><au>Pacchiardi, Kim</au><au>Itzykson, Raphaël</au><au>Biard, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug combinations screening using a Bayesian ranking approach based on dose–response models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2024-01</date><risdate>2024</risdate><volume>66</volume><issue>1</issue><spage>e2200332</spage><epage>n/a</epage><pages>e2200332-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>Drug combinations have been of increasing interest in recent years for the treatment of complex diseases such as cancer, as they could reduce the risk of drug resistance. Moreover, in oncology, combining drugs may allow tackling tumor heterogeneity. Identifying potent combinations can be an arduous task since exploring the full dose–response matrix of candidate combinations over a large number of drugs is costly and sometimes unfeasible, as the quantity of available biological material is limited and may vary across patients. Our objective was to develop a rank‐based screening approach for drug combinations in the setting of limited biological resources. A hierarchical Bayesian 4‐parameter log‐logistic (4PLL) model was used to estimate dose–response curves of dose–candidate combinations based on a parsimonious experimental design. We computed various activity ranking metrics, such as the area under the dose–response curve and Bliss synergy score, and we used the posterior distributions of ranks and the surface under the cumulative ranking curve to obtain a comprehensive final ranking of combinations. Based on simulations, our proposed method achieved good operating characteristics to identifying the most promising treatments in various scenarios with limited sample sizes and interpatient variability. We illustrate the proposed approach on real data from a combination screening experiment in acute myeloid leukemia.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>37984849</pmid><doi>10.1002/bimj.202200332</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7767-9483</orcidid><orcidid>https://orcid.org/0000-0003-0660-1264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2024-01, Vol.66 (1), p.e2200332-n/a |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_2892270874 |
source | MEDLINE; Wiley Journals |
subjects | Acute myeloid leukemia Antineoplastic Combined Chemotherapy Protocols Bayes Theorem Bayesian analysis Bayesian model Biological materials Design of experiments Dose-Response Relationship, Drug dose–response model Drug Combinations Drug development Drug dosages Drug resistance drug screening Drugs Experimental design Heterogeneity Humans Leukemia Mathematical models Neoplasms - drug therapy Ranking Research Design Sample Size |
title | Drug combinations screening using a Bayesian ranking approach based on dose–response models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20combinations%20screening%20using%20a%20Bayesian%20ranking%20approach%20based%20on%20dose%E2%80%93response%20models&rft.jtitle=Biometrical%20journal&rft.au=Boumendil,%20Luana&rft.date=2024-01&rft.volume=66&rft.issue=1&rft.spage=e2200332&rft.epage=n/a&rft.pages=e2200332-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202200332&rft_dat=%3Cproquest_cross%3E2892270874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919357266&rft_id=info:pmid/37984849&rfr_iscdi=true |