IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure
Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2023-12, Vol.62 (48), p.19395-19403 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19403 |
---|---|
container_issue | 48 |
container_start_page | 19395 |
container_title | Inorganic chemistry |
container_volume | 62 |
creator | Skaggs, Callista M Ryu, Dong-Choon Bhandari, Hari Xin, Yan Kang, Chang-Jong Lapidus, Saul H Siegfried, Peter E Ghimire, Nirmal J Tan, Xiaoyan |
description | Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm-3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level. |
doi_str_mv | 10.1021/acs.inorgchem.3c01528 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892269255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892269255</sourcerecordid><originalsourceid>FETCH-LOGICAL-p188t-1c2eaaa324e7e1aad3ebbb30cc324ae4b01b0e304ad0bac70c3979404664284d3</originalsourceid><addsrcrecordid>eNotjMtKw0AUQAdBsFY_QZilm9Q7j7wEFyVoLVQUVHRX7txcTSRt6syE0r83oqvDOYsjxIWCmQKtrpDCrN32_pMa3swMgUp1cSQmIyBJFbyfiNMQvgCgNDabiJulX7C9lnP55LluKXIt3_jQJQ8csZP7NjYSZdW0frTKH8JvfY5-oDh4PhPHH9gFPv_nVLze3b5U98nqcbGs5qtkp4oiJoo0I6LRlnNWiLVh55wBojEhWwfKARuwWINDyoFMmZcWbJZZXdjaTMXl33fn---BQ1xv2kDcdbjlfghrXZRaZ6VOU_MDP4lNFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892269255</pqid></control><display><type>article</type><title>IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure</title><source>American Chemical Society Journals</source><creator>Skaggs, Callista M ; Ryu, Dong-Choon ; Bhandari, Hari ; Xin, Yan ; Kang, Chang-Jong ; Lapidus, Saul H ; Siegfried, Peter E ; Ghimire, Nirmal J ; Tan, Xiaoyan</creator><creatorcontrib>Skaggs, Callista M ; Ryu, Dong-Choon ; Bhandari, Hari ; Xin, Yan ; Kang, Chang-Jong ; Lapidus, Saul H ; Siegfried, Peter E ; Ghimire, Nirmal J ; Tan, Xiaoyan</creatorcontrib><description>Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm-3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.</description><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.3c01528</identifier><language>eng</language><ispartof>Inorganic chemistry, 2023-12, Vol.62 (48), p.19395-19403</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Skaggs, Callista M</creatorcontrib><creatorcontrib>Ryu, Dong-Choon</creatorcontrib><creatorcontrib>Bhandari, Hari</creatorcontrib><creatorcontrib>Xin, Yan</creatorcontrib><creatorcontrib>Kang, Chang-Jong</creatorcontrib><creatorcontrib>Lapidus, Saul H</creatorcontrib><creatorcontrib>Siegfried, Peter E</creatorcontrib><creatorcontrib>Ghimire, Nirmal J</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><title>IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure</title><title>Inorganic chemistry</title><description>Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm-3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.</description><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjMtKw0AUQAdBsFY_QZilm9Q7j7wEFyVoLVQUVHRX7txcTSRt6syE0r83oqvDOYsjxIWCmQKtrpDCrN32_pMa3swMgUp1cSQmIyBJFbyfiNMQvgCgNDabiJulX7C9lnP55LluKXIt3_jQJQ8csZP7NjYSZdW0frTKH8JvfY5-oDh4PhPHH9gFPv_nVLze3b5U98nqcbGs5qtkp4oiJoo0I6LRlnNWiLVh55wBojEhWwfKARuwWINDyoFMmZcWbJZZXdjaTMXl33fn---BQ1xv2kDcdbjlfghrXZRaZ6VOU_MDP4lNFQ</recordid><startdate>20231204</startdate><enddate>20231204</enddate><creator>Skaggs, Callista M</creator><creator>Ryu, Dong-Choon</creator><creator>Bhandari, Hari</creator><creator>Xin, Yan</creator><creator>Kang, Chang-Jong</creator><creator>Lapidus, Saul H</creator><creator>Siegfried, Peter E</creator><creator>Ghimire, Nirmal J</creator><creator>Tan, Xiaoyan</creator><scope>7X8</scope></search><sort><creationdate>20231204</creationdate><title>IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure</title><author>Skaggs, Callista M ; Ryu, Dong-Choon ; Bhandari, Hari ; Xin, Yan ; Kang, Chang-Jong ; Lapidus, Saul H ; Siegfried, Peter E ; Ghimire, Nirmal J ; Tan, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p188t-1c2eaaa324e7e1aad3ebbb30cc324ae4b01b0e304ad0bac70c3979404664284d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaggs, Callista M</creatorcontrib><creatorcontrib>Ryu, Dong-Choon</creatorcontrib><creatorcontrib>Bhandari, Hari</creatorcontrib><creatorcontrib>Xin, Yan</creatorcontrib><creatorcontrib>Kang, Chang-Jong</creatorcontrib><creatorcontrib>Lapidus, Saul H</creatorcontrib><creatorcontrib>Siegfried, Peter E</creatorcontrib><creatorcontrib>Ghimire, Nirmal J</creatorcontrib><creatorcontrib>Tan, Xiaoyan</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaggs, Callista M</au><au>Ryu, Dong-Choon</au><au>Bhandari, Hari</au><au>Xin, Yan</au><au>Kang, Chang-Jong</au><au>Lapidus, Saul H</au><au>Siegfried, Peter E</au><au>Ghimire, Nirmal J</au><au>Tan, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure</atitle><jtitle>Inorganic chemistry</jtitle><date>2023-12-04</date><risdate>2023</risdate><volume>62</volume><issue>48</issue><spage>19395</spage><epage>19403</epage><pages>19395-19403</pages><eissn>1520-510X</eissn><abstract>Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm-3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.</abstract><doi>10.1021/acs.inorgchem.3c01528</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1520-510X |
ispartof | Inorganic chemistry, 2023-12, Vol.62 (48), p.19395-19403 |
issn | 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_2892269255 |
source | American Chemical Society Journals |
title | IrGe4: A Predicted Weyl-Metal with a Chiral Crystal Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IrGe4:%20A%20Predicted%20Weyl-Metal%20with%20a%20Chiral%20Crystal%20Structure&rft.jtitle=Inorganic%20chemistry&rft.au=Skaggs,%20Callista%20M&rft.date=2023-12-04&rft.volume=62&rft.issue=48&rft.spage=19395&rft.epage=19403&rft.pages=19395-19403&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.3c01528&rft_dat=%3Cproquest%3E2892269255%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892269255&rft_id=info:pmid/&rfr_iscdi=true |