Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery

Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2024-01, Vol.365, p.193-207
Hauptverfasser: Jiang, Guoyong, Guo, Jiahe, Yan, Chengqi, He, Yingjie, Chen, Jing, Zhang, Maojie, Xiang, Kaituo, Xiang, Xuejiao, Zhang, Chi, Wang, Yufeng, Liu, Shuoyuan, Nie, Pengjuan, Jiang, Tao, Kang, Yu, Wang, Cheng, Xu, Xiang, Yang, Xiaofan, Chen, Zhenbing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue
container_start_page 193
container_title Journal of controlled release
container_volume 365
creator Jiang, Guoyong
Guo, Jiahe
Yan, Chengqi
He, Yingjie
Chen, Jing
Zhang, Maojie
Xiang, Kaituo
Xiang, Xuejiao
Zhang, Chi
Wang, Yufeng
Liu, Shuoyuan
Nie, Pengjuan
Jiang, Tao
Kang, Yu
Wang, Cheng
Xu, Xiang
Yang, Xiaofan
Chen, Zhenbing
description Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were reported to facilitate angiogenesis, whereas their efficacy is limited in infected diabetic wounds because of the complex niche. In this study, extrusion-derived endothelial NVs were manufactured and then hybridized with rhamnolipid liposomes to obtain biomimetic hybrid nanovesicles (HNVs). The HNVs were biocompatible and achieved endothelium-targeted delivery through membrane CXCR4-mediated homologous homing. More importantly, the HNVs exhibited better penetration and antibacterial activity compared with NVs, which further promote the intrinsic endothelium targeting in infected diabetic wounds. Therefore, the present research has established a novel bioactive delivery system-HNV with enhanced targeting, penetration, and antibacterial activity-which might be an encouraging strategy for infected diabetic wound treatment.
doi_str_mv 10.1016/j.jconrel.2023.11.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2892012608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892012608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-cbc03c6fde47a956d828e13ca37f9bdf62a3cd79542051b697a7182b9ec383913</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EoqXwCKAcuSR4yWIfoWKTKnGBI7Ice0JdJU6xk6K-Pe4Cp9Fovpn59SF0TXBGMCnvVtlK985Dm1FMWUZIhok4QVPCK5bmQhSnaBo5nrKyEBN0EcIKY1ywvDpHE1aJohQ0n6LPB9t3toPB6mS5rb01iVOu30CwuoWQ2G7tY5dY14AewCTGqnpP__SjM8nGqgTcUjkdZ4PyX7CHoLUb8NtLdNaoNsDVsc7Qx9Pj-_wlXbw9v87vF6lmWAyprjVmumwM5JWKyQynHAjTilWNqE1TUsW0iZlzigtSl6JSFeG0FqAZZ4KwGbo93I1hv0cIg-xs0NC2ykE_Bkm5oJjQEvOIFgdU-z4ED41ce9spv5UEy51ZuZJHs3JnVhIio9m4d3N8MdYdmP-tP5XsF82MeMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892012608</pqid></control><display><type>article</type><title>Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiang, Guoyong ; Guo, Jiahe ; Yan, Chengqi ; He, Yingjie ; Chen, Jing ; Zhang, Maojie ; Xiang, Kaituo ; Xiang, Xuejiao ; Zhang, Chi ; Wang, Yufeng ; Liu, Shuoyuan ; Nie, Pengjuan ; Jiang, Tao ; Kang, Yu ; Wang, Cheng ; Xu, Xiang ; Yang, Xiaofan ; Chen, Zhenbing</creator><creatorcontrib>Jiang, Guoyong ; Guo, Jiahe ; Yan, Chengqi ; He, Yingjie ; Chen, Jing ; Zhang, Maojie ; Xiang, Kaituo ; Xiang, Xuejiao ; Zhang, Chi ; Wang, Yufeng ; Liu, Shuoyuan ; Nie, Pengjuan ; Jiang, Tao ; Kang, Yu ; Wang, Cheng ; Xu, Xiang ; Yang, Xiaofan ; Chen, Zhenbing</creatorcontrib><description>Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were reported to facilitate angiogenesis, whereas their efficacy is limited in infected diabetic wounds because of the complex niche. In this study, extrusion-derived endothelial NVs were manufactured and then hybridized with rhamnolipid liposomes to obtain biomimetic hybrid nanovesicles (HNVs). The HNVs were biocompatible and achieved endothelium-targeted delivery through membrane CXCR4-mediated homologous homing. More importantly, the HNVs exhibited better penetration and antibacterial activity compared with NVs, which further promote the intrinsic endothelium targeting in infected diabetic wounds. Therefore, the present research has established a novel bioactive delivery system-HNV with enhanced targeting, penetration, and antibacterial activity-which might be an encouraging strategy for infected diabetic wound treatment.</description><identifier>ISSN: 0168-3659</identifier><identifier>ISSN: 1873-4995</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2023.11.019</identifier><identifier>PMID: 37956924</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>Journal of controlled release, 2024-01, Vol.365, p.193-207</ispartof><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-cbc03c6fde47a956d828e13ca37f9bdf62a3cd79542051b697a7182b9ec383913</citedby><cites>FETCH-LOGICAL-c309t-cbc03c6fde47a956d828e13ca37f9bdf62a3cd79542051b697a7182b9ec383913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37956924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Guoyong</creatorcontrib><creatorcontrib>Guo, Jiahe</creatorcontrib><creatorcontrib>Yan, Chengqi</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhang, Maojie</creatorcontrib><creatorcontrib>Xiang, Kaituo</creatorcontrib><creatorcontrib>Xiang, Xuejiao</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Shuoyuan</creatorcontrib><creatorcontrib>Nie, Pengjuan</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Yang, Xiaofan</creatorcontrib><creatorcontrib>Chen, Zhenbing</creatorcontrib><title>Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were reported to facilitate angiogenesis, whereas their efficacy is limited in infected diabetic wounds because of the complex niche. In this study, extrusion-derived endothelial NVs were manufactured and then hybridized with rhamnolipid liposomes to obtain biomimetic hybrid nanovesicles (HNVs). The HNVs were biocompatible and achieved endothelium-targeted delivery through membrane CXCR4-mediated homologous homing. More importantly, the HNVs exhibited better penetration and antibacterial activity compared with NVs, which further promote the intrinsic endothelium targeting in infected diabetic wounds. Therefore, the present research has established a novel bioactive delivery system-HNV with enhanced targeting, penetration, and antibacterial activity-which might be an encouraging strategy for infected diabetic wound treatment.</description><issn>0168-3659</issn><issn>1873-4995</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAQhi0EoqXwCKAcuSR4yWIfoWKTKnGBI7Ice0JdJU6xk6K-Pe4Cp9Fovpn59SF0TXBGMCnvVtlK985Dm1FMWUZIhok4QVPCK5bmQhSnaBo5nrKyEBN0EcIKY1ywvDpHE1aJohQ0n6LPB9t3toPB6mS5rb01iVOu30CwuoWQ2G7tY5dY14AewCTGqnpP__SjM8nGqgTcUjkdZ4PyX7CHoLUb8NtLdNaoNsDVsc7Qx9Pj-_wlXbw9v87vF6lmWAyprjVmumwM5JWKyQynHAjTilWNqE1TUsW0iZlzigtSl6JSFeG0FqAZZ4KwGbo93I1hv0cIg-xs0NC2ykE_Bkm5oJjQEvOIFgdU-z4ED41ce9spv5UEy51ZuZJHs3JnVhIio9m4d3N8MdYdmP-tP5XsF82MeMg</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Jiang, Guoyong</creator><creator>Guo, Jiahe</creator><creator>Yan, Chengqi</creator><creator>He, Yingjie</creator><creator>Chen, Jing</creator><creator>Zhang, Maojie</creator><creator>Xiang, Kaituo</creator><creator>Xiang, Xuejiao</creator><creator>Zhang, Chi</creator><creator>Wang, Yufeng</creator><creator>Liu, Shuoyuan</creator><creator>Nie, Pengjuan</creator><creator>Jiang, Tao</creator><creator>Kang, Yu</creator><creator>Wang, Cheng</creator><creator>Xu, Xiang</creator><creator>Yang, Xiaofan</creator><creator>Chen, Zhenbing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202401</creationdate><title>Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery</title><author>Jiang, Guoyong ; Guo, Jiahe ; Yan, Chengqi ; He, Yingjie ; Chen, Jing ; Zhang, Maojie ; Xiang, Kaituo ; Xiang, Xuejiao ; Zhang, Chi ; Wang, Yufeng ; Liu, Shuoyuan ; Nie, Pengjuan ; Jiang, Tao ; Kang, Yu ; Wang, Cheng ; Xu, Xiang ; Yang, Xiaofan ; Chen, Zhenbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-cbc03c6fde47a956d828e13ca37f9bdf62a3cd79542051b697a7182b9ec383913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guoyong</creatorcontrib><creatorcontrib>Guo, Jiahe</creatorcontrib><creatorcontrib>Yan, Chengqi</creatorcontrib><creatorcontrib>He, Yingjie</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Zhang, Maojie</creatorcontrib><creatorcontrib>Xiang, Kaituo</creatorcontrib><creatorcontrib>Xiang, Xuejiao</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Wang, Yufeng</creatorcontrib><creatorcontrib>Liu, Shuoyuan</creatorcontrib><creatorcontrib>Nie, Pengjuan</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Xu, Xiang</creatorcontrib><creatorcontrib>Yang, Xiaofan</creatorcontrib><creatorcontrib>Chen, Zhenbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guoyong</au><au>Guo, Jiahe</au><au>Yan, Chengqi</au><au>He, Yingjie</au><au>Chen, Jing</au><au>Zhang, Maojie</au><au>Xiang, Kaituo</au><au>Xiang, Xuejiao</au><au>Zhang, Chi</au><au>Wang, Yufeng</au><au>Liu, Shuoyuan</au><au>Nie, Pengjuan</au><au>Jiang, Tao</au><au>Kang, Yu</au><au>Wang, Cheng</au><au>Xu, Xiang</au><au>Yang, Xiaofan</au><au>Chen, Zhenbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2024-01</date><risdate>2024</risdate><volume>365</volume><spage>193</spage><epage>207</epage><pages>193-207</pages><issn>0168-3659</issn><issn>1873-4995</issn><eissn>1873-4995</eissn><abstract>Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were reported to facilitate angiogenesis, whereas their efficacy is limited in infected diabetic wounds because of the complex niche. In this study, extrusion-derived endothelial NVs were manufactured and then hybridized with rhamnolipid liposomes to obtain biomimetic hybrid nanovesicles (HNVs). The HNVs were biocompatible and achieved endothelium-targeted delivery through membrane CXCR4-mediated homologous homing. More importantly, the HNVs exhibited better penetration and antibacterial activity compared with NVs, which further promote the intrinsic endothelium targeting in infected diabetic wounds. Therefore, the present research has established a novel bioactive delivery system-HNV with enhanced targeting, penetration, and antibacterial activity-which might be an encouraging strategy for infected diabetic wound treatment.</abstract><cop>Netherlands</cop><pmid>37956924</pmid><doi>10.1016/j.jconrel.2023.11.019</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-3659
ispartof Journal of controlled release, 2024-01, Vol.365, p.193-207
issn 0168-3659
1873-4995
1873-4995
language eng
recordid cdi_proquest_miscellaneous_2892012608
source Access via ScienceDirect (Elsevier)
title Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20hybrid%20nanovesicles%20improve%20infected%20diabetic%20wound%20via%20enhanced%20targeted%20delivery&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Jiang,%20Guoyong&rft.date=2024-01&rft.volume=365&rft.spage=193&rft.epage=207&rft.pages=193-207&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2023.11.019&rft_dat=%3Cproquest_cross%3E2892012608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892012608&rft_id=info:pmid/37956924&rfr_iscdi=true