Application of machine learning in atmospheric pollution research: A state-of-art review

Machine learning (ML) is an artificial intelligence technology that has been used in atmospheric pollution research due to their powerful fitting ability. In this review, 105 articles related to ML and the atmospheric pollution research are critically reviewed. Applications of ML in the prediction o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-02, Vol.910, p.168588-168588, Article 168588
Hauptverfasser: Peng, Zezhi, Zhang, Bin, Wang, Diwei, Niu, Xinyi, Sun, Jian, Xu, Hongmei, Cao, Junji, Shen, Zhenxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning (ML) is an artificial intelligence technology that has been used in atmospheric pollution research due to their powerful fitting ability. In this review, 105 articles related to ML and the atmospheric pollution research are critically reviewed. Applications of ML in the prediction of atmospheric pollution (mainly particulate matters) are systematically described, including the principle of prediction, influencing factors and improvement measures. Researchers can improve the accuracy of the prediction model through three main aspects, namely considering the geographical features of the study area into the model, introducing the physical characteristics of pollutants, matching and optimizing ML models. And by using interpretable ML tools, researchers are able to understand the mechanism of the model and gain in-depth information. Then, the state-of-art applications of ML in the source apportionment of atmospheric particulate matter and the effect of atmospheric pollutants on human health are also described. In addition, the advantages and disadvantages of the current applications of ML in atmospheric pollution research are summarized, and the application perspective of ML in this field is elucidated. Given the scarcity of source apportionment applications and human health research, standardized research methods and specialized ML methods are required in atmospheric pollution research to connect these two disciplines.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.168588