How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?
The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction σep(λ) in the lower troposphere....
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research - Atmospheres 2006-02, Vol.111 (D5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D5 |
container_start_page | |
container_title | Journal of Geophysical Research - Atmospheres |
container_volume | 111 |
creator | Schmid, B. Ferrare, R. Flynn, C. Elleman, R. Covert, D. Strawa, A. Welton, E. Turner, D. Jonsson, H. Redemann, J. Eilers, J. Ricci, K. Hallar, A. G. Clayton, M. Michalsky, J. Smirnov, A. Holben, B. Barnard, J. |
description | The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction σep(λ) in the lower troposphere. During one month, a heavily instrumented aircraft with well‐characterized aerosol sampling ability carrying well‐proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS‐14), airborne nephelometer/absorption photometer, airborne cavity ring‐down system, ground‐based Raman lidar, and two ground‐based elastic backscatter lidars. We find the in situ measured σep(λ) to be lower than the AATS‐14 derived values. Bias differences are 0.002–0.004 Km−1 equivalent to 13–17% in the visible, or 45% in the near‐infrared. On the other hand, we find that with respect to AATS‐14, the lidar σep(λ) are higher: Bias differences are 0.004 Km−1 (13%) and 0.007 Km−1 (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, λ = 523 nm) and 0.029 Km−1 (54%) for the Raman lidar (λ = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of σep(λ) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer σep(λ). On the other hand, σep(λ) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state‐of‐the‐art instrumentation is 15–20% at visible wavelengths and potentially larger in the UV and near‐infrared. |
doi_str_mv | 10.1029/2005JD005837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28918415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28013291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5451-8dc7a6d15688be12df9a3b70ba574a0c4f12750474cef187dbc9472fc22c354b3</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxRtRcFj35geIF09G87eTPons6qzDorAoegvpdMWJ9nTaJOPsfnvTtIgnNYekIL961HvVNI8peU4J614wQuTusl6aq3vNhlHZYsYIu99sCBUaE8bUw-Y856-kHiFbQeimSVfxhE4wjmiIKBdbAEePyx6wTQUVcPspfD9CRgew-ZjC9AXVT_QDUgnOjmhO0YcRUPSopDjHPO8hBYcspJjjiOC2hMmVECfk4mG2CV4-ah54O2Y4__WeNR_fvP5wcYWv32_fXry6xk4KSbEenLLtUG1o3QNlg-8s7xXprVTCEic8ZUoSoYQDT7UaetcJxbxjzHEpen7WPFl1Yy7BZBcWNy5OE7hitFJSsMo8XZnqY7FZzCFkV-OwE8RjNkx3VAsq_wMklLOO_hOkiijJ-aL4bAVdTSon8GZO4WDTnaHELBs1f2604nzFTzXuu7-yZre9uaSMkmUavHaFXOD2d5dN30yruJLm07utkbVs1e7GfOY_Ae1BsUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17075335</pqid></control><display><type>article</type><title>How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Schmid, B. ; Ferrare, R. ; Flynn, C. ; Elleman, R. ; Covert, D. ; Strawa, A. ; Welton, E. ; Turner, D. ; Jonsson, H. ; Redemann, J. ; Eilers, J. ; Ricci, K. ; Hallar, A. G. ; Clayton, M. ; Michalsky, J. ; Smirnov, A. ; Holben, B. ; Barnard, J.</creator><creatorcontrib>Schmid, B. ; Ferrare, R. ; Flynn, C. ; Elleman, R. ; Covert, D. ; Strawa, A. ; Welton, E. ; Turner, D. ; Jonsson, H. ; Redemann, J. ; Eilers, J. ; Ricci, K. ; Hallar, A. G. ; Clayton, M. ; Michalsky, J. ; Smirnov, A. ; Holben, B. ; Barnard, J. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction σep(λ) in the lower troposphere. During one month, a heavily instrumented aircraft with well‐characterized aerosol sampling ability carrying well‐proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS‐14), airborne nephelometer/absorption photometer, airborne cavity ring‐down system, ground‐based Raman lidar, and two ground‐based elastic backscatter lidars. We find the in situ measured σep(λ) to be lower than the AATS‐14 derived values. Bias differences are 0.002–0.004 Km−1 equivalent to 13–17% in the visible, or 45% in the near‐infrared. On the other hand, we find that with respect to AATS‐14, the lidar σep(λ) are higher: Bias differences are 0.004 Km−1 (13%) and 0.007 Km−1 (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, λ = 523 nm) and 0.029 Km−1 (54%) for the Raman lidar (λ = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of σep(λ) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer σep(λ). On the other hand, σep(λ) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state‐of‐the‐art instrumentation is 15–20% at visible wavelengths and potentially larger in the UV and near‐infrared.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 0747-7309</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2005JD005837</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>aerosol extinction ; aerosol optical depth ; AEROSOLS ; airborne sun photometer ; AIRCRAFT ; columnar water-vapor ; COMPARATIVE EVALUATIONS ; ENVIRONMENTAL SCIENCES ; ground-based measurements ; MEASURING METHODS ; Mid-Atlantic Coast ; OPTICAL RADAR ; optical-depth spetra ; particulate black carbon ; PHOTOMETERS ; radiation measurement program ; REMOTE SENSING ; remote-sensing measurements ; SAMPLING ; SENSITIVITY ; single-scattering albedo ; southern great-plains ; Sun photometer ; TROPOSPHERE</subject><ispartof>Journal of Geophysical Research - Atmospheres, 2006-02, Vol.111 (D5), p.n/a</ispartof><rights>Copyright 2006 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5451-8dc7a6d15688be12df9a3b70ba574a0c4f12750474cef187dbc9472fc22c354b3</citedby><cites>FETCH-LOGICAL-c5451-8dc7a6d15688be12df9a3b70ba574a0c4f12750474cef187dbc9472fc22c354b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JD005837$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JD005837$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/877542$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmid, B.</creatorcontrib><creatorcontrib>Ferrare, R.</creatorcontrib><creatorcontrib>Flynn, C.</creatorcontrib><creatorcontrib>Elleman, R.</creatorcontrib><creatorcontrib>Covert, D.</creatorcontrib><creatorcontrib>Strawa, A.</creatorcontrib><creatorcontrib>Welton, E.</creatorcontrib><creatorcontrib>Turner, D.</creatorcontrib><creatorcontrib>Jonsson, H.</creatorcontrib><creatorcontrib>Redemann, J.</creatorcontrib><creatorcontrib>Eilers, J.</creatorcontrib><creatorcontrib>Ricci, K.</creatorcontrib><creatorcontrib>Hallar, A. G.</creatorcontrib><creatorcontrib>Clayton, M.</creatorcontrib><creatorcontrib>Michalsky, J.</creatorcontrib><creatorcontrib>Smirnov, A.</creatorcontrib><creatorcontrib>Holben, B.</creatorcontrib><creatorcontrib>Barnard, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?</title><title>Journal of Geophysical Research - Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction σep(λ) in the lower troposphere. During one month, a heavily instrumented aircraft with well‐characterized aerosol sampling ability carrying well‐proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS‐14), airborne nephelometer/absorption photometer, airborne cavity ring‐down system, ground‐based Raman lidar, and two ground‐based elastic backscatter lidars. We find the in situ measured σep(λ) to be lower than the AATS‐14 derived values. Bias differences are 0.002–0.004 Km−1 equivalent to 13–17% in the visible, or 45% in the near‐infrared. On the other hand, we find that with respect to AATS‐14, the lidar σep(λ) are higher: Bias differences are 0.004 Km−1 (13%) and 0.007 Km−1 (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, λ = 523 nm) and 0.029 Km−1 (54%) for the Raman lidar (λ = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of σep(λ) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer σep(λ). On the other hand, σep(λ) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state‐of‐the‐art instrumentation is 15–20% at visible wavelengths and potentially larger in the UV and near‐infrared.</description><subject>aerosol extinction</subject><subject>aerosol optical depth</subject><subject>AEROSOLS</subject><subject>airborne sun photometer</subject><subject>AIRCRAFT</subject><subject>columnar water-vapor</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>ground-based measurements</subject><subject>MEASURING METHODS</subject><subject>Mid-Atlantic Coast</subject><subject>OPTICAL RADAR</subject><subject>optical-depth spetra</subject><subject>particulate black carbon</subject><subject>PHOTOMETERS</subject><subject>radiation measurement program</subject><subject>REMOTE SENSING</subject><subject>remote-sensing measurements</subject><subject>SAMPLING</subject><subject>SENSITIVITY</subject><subject>single-scattering albedo</subject><subject>southern great-plains</subject><subject>Sun photometer</subject><subject>TROPOSPHERE</subject><issn>0148-0227</issn><issn>0747-7309</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxRtRcFj35geIF09G87eTPons6qzDorAoegvpdMWJ9nTaJOPsfnvTtIgnNYekIL961HvVNI8peU4J614wQuTusl6aq3vNhlHZYsYIu99sCBUaE8bUw-Y856-kHiFbQeimSVfxhE4wjmiIKBdbAEePyx6wTQUVcPspfD9CRgew-ZjC9AXVT_QDUgnOjmhO0YcRUPSopDjHPO8hBYcspJjjiOC2hMmVECfk4mG2CV4-ah54O2Y4__WeNR_fvP5wcYWv32_fXry6xk4KSbEenLLtUG1o3QNlg-8s7xXprVTCEic8ZUoSoYQDT7UaetcJxbxjzHEpen7WPFl1Yy7BZBcWNy5OE7hitFJSsMo8XZnqY7FZzCFkV-OwE8RjNkx3VAsq_wMklLOO_hOkiijJ-aL4bAVdTSon8GZO4WDTnaHELBs1f2604nzFTzXuu7-yZre9uaSMkmUavHaFXOD2d5dN30yruJLm07utkbVs1e7GfOY_Ae1BsUk</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Schmid, B.</creator><creator>Ferrare, R.</creator><creator>Flynn, C.</creator><creator>Elleman, R.</creator><creator>Covert, D.</creator><creator>Strawa, A.</creator><creator>Welton, E.</creator><creator>Turner, D.</creator><creator>Jonsson, H.</creator><creator>Redemann, J.</creator><creator>Eilers, J.</creator><creator>Ricci, K.</creator><creator>Hallar, A. G.</creator><creator>Clayton, M.</creator><creator>Michalsky, J.</creator><creator>Smirnov, A.</creator><creator>Holben, B.</creator><creator>Barnard, J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20060201</creationdate><title>How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?</title><author>Schmid, B. ; Ferrare, R. ; Flynn, C. ; Elleman, R. ; Covert, D. ; Strawa, A. ; Welton, E. ; Turner, D. ; Jonsson, H. ; Redemann, J. ; Eilers, J. ; Ricci, K. ; Hallar, A. G. ; Clayton, M. ; Michalsky, J. ; Smirnov, A. ; Holben, B. ; Barnard, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5451-8dc7a6d15688be12df9a3b70ba574a0c4f12750474cef187dbc9472fc22c354b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>aerosol extinction</topic><topic>aerosol optical depth</topic><topic>AEROSOLS</topic><topic>airborne sun photometer</topic><topic>AIRCRAFT</topic><topic>columnar water-vapor</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>ground-based measurements</topic><topic>MEASURING METHODS</topic><topic>Mid-Atlantic Coast</topic><topic>OPTICAL RADAR</topic><topic>optical-depth spetra</topic><topic>particulate black carbon</topic><topic>PHOTOMETERS</topic><topic>radiation measurement program</topic><topic>REMOTE SENSING</topic><topic>remote-sensing measurements</topic><topic>SAMPLING</topic><topic>SENSITIVITY</topic><topic>single-scattering albedo</topic><topic>southern great-plains</topic><topic>Sun photometer</topic><topic>TROPOSPHERE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmid, B.</creatorcontrib><creatorcontrib>Ferrare, R.</creatorcontrib><creatorcontrib>Flynn, C.</creatorcontrib><creatorcontrib>Elleman, R.</creatorcontrib><creatorcontrib>Covert, D.</creatorcontrib><creatorcontrib>Strawa, A.</creatorcontrib><creatorcontrib>Welton, E.</creatorcontrib><creatorcontrib>Turner, D.</creatorcontrib><creatorcontrib>Jonsson, H.</creatorcontrib><creatorcontrib>Redemann, J.</creatorcontrib><creatorcontrib>Eilers, J.</creatorcontrib><creatorcontrib>Ricci, K.</creatorcontrib><creatorcontrib>Hallar, A. G.</creatorcontrib><creatorcontrib>Clayton, M.</creatorcontrib><creatorcontrib>Michalsky, J.</creatorcontrib><creatorcontrib>Smirnov, A.</creatorcontrib><creatorcontrib>Holben, B.</creatorcontrib><creatorcontrib>Barnard, J.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research - Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmid, B.</au><au>Ferrare, R.</au><au>Flynn, C.</au><au>Elleman, R.</au><au>Covert, D.</au><au>Strawa, A.</au><au>Welton, E.</au><au>Turner, D.</au><au>Jonsson, H.</au><au>Redemann, J.</au><au>Eilers, J.</au><au>Ricci, K.</au><au>Hallar, A. G.</au><au>Clayton, M.</au><au>Michalsky, J.</au><au>Smirnov, A.</au><au>Holben, B.</au><au>Barnard, J.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare?</atitle><jtitle>Journal of Geophysical Research - Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>111</volume><issue>D5</issue><epage>n/a</epage><issn>0148-0227</issn><issn>0747-7309</issn><eissn>2156-2202</eissn><abstract>The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction σep(λ) in the lower troposphere. During one month, a heavily instrumented aircraft with well‐characterized aerosol sampling ability carrying well‐proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS‐14), airborne nephelometer/absorption photometer, airborne cavity ring‐down system, ground‐based Raman lidar, and two ground‐based elastic backscatter lidars. We find the in situ measured σep(λ) to be lower than the AATS‐14 derived values. Bias differences are 0.002–0.004 Km−1 equivalent to 13–17% in the visible, or 45% in the near‐infrared. On the other hand, we find that with respect to AATS‐14, the lidar σep(λ) are higher: Bias differences are 0.004 Km−1 (13%) and 0.007 Km−1 (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, λ = 523 nm) and 0.029 Km−1 (54%) for the Raman lidar (λ = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of σep(λ) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer σep(λ). On the other hand, σep(λ) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state‐of‐the‐art instrumentation is 15–20% at visible wavelengths and potentially larger in the UV and near‐infrared.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JD005837</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research - Atmospheres, 2006-02, Vol.111 (D5), p.n/a |
issn | 0148-0227 0747-7309 2156-2202 |
language | eng |
recordid | cdi_proquest_miscellaneous_28918415 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | aerosol extinction aerosol optical depth AEROSOLS airborne sun photometer AIRCRAFT columnar water-vapor COMPARATIVE EVALUATIONS ENVIRONMENTAL SCIENCES ground-based measurements MEASURING METHODS Mid-Atlantic Coast OPTICAL RADAR optical-depth spetra particulate black carbon PHOTOMETERS radiation measurement program REMOTE SENSING remote-sensing measurements SAMPLING SENSITIVITY single-scattering albedo southern great-plains Sun photometer TROPOSPHERE |
title | How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20well%20do%20state-of-the-art%20techniques%20measuring%20the%20vertical%20profile%20of%20tropospheric%20aerosol%20extinction%20compare?&rft.jtitle=Journal%20of%20Geophysical%20Research%20-%20Atmospheres&rft.au=Schmid,%20B.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2006-02-01&rft.volume=111&rft.issue=D5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JD005837&rft_dat=%3Cproquest_osti_%3E28013291%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17075335&rft_id=info:pmid/&rfr_iscdi=true |