Detection of anomalous propagation echoes in weather radar data using neural networks
The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 1999-01, Vol.37 (1), p.287-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 1 |
container_start_page | 287 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 37 |
creator | Grecu, M. Krajewski, W.F. |
description | The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation. |
doi_str_mv | 10.1109/36.739163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28917602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>739163</ieee_id><sourcerecordid>28917602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpDKxMHhCIIeDv2CMqn1IlljJHV8dpA2lc7EQV_x5DKtiA6YZ7_Nq-Q-iYkktKibni6jLnhiq-g0ZUSp0RJcQuGhFqVMa0YfvoIMYXQqiQNB-h5xvXOdvVvsW-wtD6FTS-j3gd_BoW8NVwduldxHWLNw66pQs4QAkBl9AB7mPdLnDr-gBNKt3Gh9d4iPYqaKI72tYxmt3dziYP2fTp_nFyPc2sIKTL5LxkRHOjLPCqYtJITksltDCKMKOVZNUcgGsocwNasNxKKYSYG2vA6pKP0fkQm1771rvYFas6Wtc00Lr0iUIbQyWheZ7k2a8yTYbm6dJ_QJZro_TfUBmmKRcJXgzQBh9jcFWxDvUKwntBSfG5s4KrYthZsqfbUIgWmipAa-v4c0CJNCOa2MnAaufcd3eb8QHmoZ0i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26928134</pqid></control><display><type>article</type><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><source>IEEE Xplore</source><creator>Grecu, M. ; Krajewski, W.F.</creator><creatorcontrib>Grecu, M. ; Krajewski, W.F.</creatorcontrib><description>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.739163</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feature extraction ; Feedforward neural networks ; Fractals ; Fuzzy neural networks ; Internal geophysics ; Meteorological radar ; Neural networks ; Performance analysis ; Radar detection ; Testing ; Wavelet analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1999-01, Vol.37 (1), p.287-296</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</citedby><cites>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/739163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/739163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1645951$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grecu, M.</creatorcontrib><creatorcontrib>Krajewski, W.F.</creatorcontrib><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Feedforward neural networks</subject><subject>Fractals</subject><subject>Fuzzy neural networks</subject><subject>Internal geophysics</subject><subject>Meteorological radar</subject><subject>Neural networks</subject><subject>Performance analysis</subject><subject>Radar detection</subject><subject>Testing</subject><subject>Wavelet analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1PwzAQBmALgUQpDKxMHhCIIeDv2CMqn1IlljJHV8dpA2lc7EQV_x5DKtiA6YZ7_Nq-Q-iYkktKibni6jLnhiq-g0ZUSp0RJcQuGhFqVMa0YfvoIMYXQqiQNB-h5xvXOdvVvsW-wtD6FTS-j3gd_BoW8NVwduldxHWLNw66pQs4QAkBl9AB7mPdLnDr-gBNKt3Gh9d4iPYqaKI72tYxmt3dziYP2fTp_nFyPc2sIKTL5LxkRHOjLPCqYtJITksltDCKMKOVZNUcgGsocwNasNxKKYSYG2vA6pKP0fkQm1771rvYFas6Wtc00Lr0iUIbQyWheZ7k2a8yTYbm6dJ_QJZro_TfUBmmKRcJXgzQBh9jcFWxDvUKwntBSfG5s4KrYthZsqfbUIgWmipAa-v4c0CJNCOa2MnAaufcd3eb8QHmoZ0i</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Grecu, M.</creator><creator>Krajewski, W.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199901</creationdate><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><author>Grecu, M. ; Krajewski, W.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Feedforward neural networks</topic><topic>Fractals</topic><topic>Fuzzy neural networks</topic><topic>Internal geophysics</topic><topic>Meteorological radar</topic><topic>Neural networks</topic><topic>Performance analysis</topic><topic>Radar detection</topic><topic>Testing</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grecu, M.</creatorcontrib><creatorcontrib>Krajewski, W.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grecu, M.</au><au>Krajewski, W.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of anomalous propagation echoes in weather radar data using neural networks</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>1999-01</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>287</spage><epage>296</epage><pages>287-296</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.739163</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 1999-01, Vol.37 (1), p.287-296 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_28917602 |
source | IEEE Xplore |
subjects | Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Feature extraction Feedforward neural networks Fractals Fuzzy neural networks Internal geophysics Meteorological radar Neural networks Performance analysis Radar detection Testing Wavelet analysis |
title | Detection of anomalous propagation echoes in weather radar data using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20anomalous%20propagation%20echoes%20in%20weather%20radar%20data%20using%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Grecu,%20M.&rft.date=1999-01&rft.volume=37&rft.issue=1&rft.spage=287&rft.epage=296&rft.pages=287-296&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.739163&rft_dat=%3Cproquest_RIE%3E28917602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26928134&rft_id=info:pmid/&rft_ieee_id=739163&rfr_iscdi=true |