Detection of anomalous propagation echoes in weather radar data using neural networks

The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1999-01, Vol.37 (1), p.287-296
Hauptverfasser: Grecu, M., Krajewski, W.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 1
container_start_page 287
container_title IEEE transactions on geoscience and remote sensing
container_volume 37
creator Grecu, M.
Krajewski, W.F.
description The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.
doi_str_mv 10.1109/36.739163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28917602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>739163</ieee_id><sourcerecordid>28917602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgUQpDKxMHhCIIeDv2CMqn1IlljJHV8dpA2lc7EQV_x5DKtiA6YZ7_Nq-Q-iYkktKibni6jLnhiq-g0ZUSp0RJcQuGhFqVMa0YfvoIMYXQqiQNB-h5xvXOdvVvsW-wtD6FTS-j3gd_BoW8NVwduldxHWLNw66pQs4QAkBl9AB7mPdLnDr-gBNKt3Gh9d4iPYqaKI72tYxmt3dziYP2fTp_nFyPc2sIKTL5LxkRHOjLPCqYtJITksltDCKMKOVZNUcgGsocwNasNxKKYSYG2vA6pKP0fkQm1771rvYFas6Wtc00Lr0iUIbQyWheZ7k2a8yTYbm6dJ_QJZro_TfUBmmKRcJXgzQBh9jcFWxDvUKwntBSfG5s4KrYthZsqfbUIgWmipAa-v4c0CJNCOa2MnAaufcd3eb8QHmoZ0i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26928134</pqid></control><display><type>article</type><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><source>IEEE Xplore</source><creator>Grecu, M. ; Krajewski, W.F.</creator><creatorcontrib>Grecu, M. ; Krajewski, W.F.</creatorcontrib><description>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.739163</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feature extraction ; Feedforward neural networks ; Fractals ; Fuzzy neural networks ; Internal geophysics ; Meteorological radar ; Neural networks ; Performance analysis ; Radar detection ; Testing ; Wavelet analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 1999-01, Vol.37 (1), p.287-296</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</citedby><cites>FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/739163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/739163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1645951$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grecu, M.</creatorcontrib><creatorcontrib>Krajewski, W.F.</creatorcontrib><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Feedforward neural networks</subject><subject>Fractals</subject><subject>Fuzzy neural networks</subject><subject>Internal geophysics</subject><subject>Meteorological radar</subject><subject>Neural networks</subject><subject>Performance analysis</subject><subject>Radar detection</subject><subject>Testing</subject><subject>Wavelet analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1PwzAQBmALgUQpDKxMHhCIIeDv2CMqn1IlljJHV8dpA2lc7EQV_x5DKtiA6YZ7_Nq-Q-iYkktKibni6jLnhiq-g0ZUSp0RJcQuGhFqVMa0YfvoIMYXQqiQNB-h5xvXOdvVvsW-wtD6FTS-j3gd_BoW8NVwduldxHWLNw66pQs4QAkBl9AB7mPdLnDr-gBNKt3Gh9d4iPYqaKI72tYxmt3dziYP2fTp_nFyPc2sIKTL5LxkRHOjLPCqYtJITksltDCKMKOVZNUcgGsocwNasNxKKYSYG2vA6pKP0fkQm1771rvYFas6Wtc00Lr0iUIbQyWheZ7k2a8yTYbm6dJ_QJZro_TfUBmmKRcJXgzQBh9jcFWxDvUKwntBSfG5s4KrYthZsqfbUIgWmipAa-v4c0CJNCOa2MnAaufcd3eb8QHmoZ0i</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Grecu, M.</creator><creator>Krajewski, W.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199901</creationdate><title>Detection of anomalous propagation echoes in weather radar data using neural networks</title><author>Grecu, M. ; Krajewski, W.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-5bd208396ca3ff259531d6484960298652fbaa38ad79a8427c55444b9c9ac8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Feedforward neural networks</topic><topic>Fractals</topic><topic>Fuzzy neural networks</topic><topic>Internal geophysics</topic><topic>Meteorological radar</topic><topic>Neural networks</topic><topic>Performance analysis</topic><topic>Radar detection</topic><topic>Testing</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grecu, M.</creatorcontrib><creatorcontrib>Krajewski, W.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grecu, M.</au><au>Krajewski, W.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of anomalous propagation echoes in weather radar data using neural networks</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>1999-01</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>287</spage><epage>296</epage><pages>287-296</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The authors investigate a neural network-based methodology for detection of the anomalous propagation (AP) radar echo. The methodology is devised to cope with the situations when only single scan data are available. The output of the procedure is quantified in four classes corresponding to the upper limits of 25, 50, 75, and 100% of AP echo per scan. The high dimension of the input data space is reduced by feature extraction based on physical considerations. Fractal based, statistical, and wavelet analyses are performed, and their characteristics are used as features. A feedforward neural network is used for classification in the four classes, with a fuzzy strategy used in the network training. The authors test the methodology on real data and make a comprehensive assessment of the procedure's accuracy based on cross validation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.739163</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 1999-01, Vol.37 (1), p.287-296
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28917602
source IEEE Xplore
subjects Applied geophysics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feature extraction
Feedforward neural networks
Fractals
Fuzzy neural networks
Internal geophysics
Meteorological radar
Neural networks
Performance analysis
Radar detection
Testing
Wavelet analysis
title Detection of anomalous propagation echoes in weather radar data using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20anomalous%20propagation%20echoes%20in%20weather%20radar%20data%20using%20neural%20networks&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Grecu,%20M.&rft.date=1999-01&rft.volume=37&rft.issue=1&rft.spage=287&rft.epage=296&rft.pages=287-296&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.739163&rft_dat=%3Cproquest_RIE%3E28917602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26928134&rft_id=info:pmid/&rft_ieee_id=739163&rfr_iscdi=true