Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input

The exponential stabilization of stochastic neural networks in mean square sense with saturated impulsive input is investigated in this paper. Firstly, the saturated term is handled by polyhedral representation method. When the impulsive sequence is determined by average impulsive interval, impulsiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2024-02, Vol.170, p.127-135
Hauptverfasser: Deng, Hao, Li, Chuandong, Chang, Fei, Wang, Yinuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 127
container_title Neural networks
container_volume 170
creator Deng, Hao
Li, Chuandong
Chang, Fei
Wang, Yinuo
description The exponential stabilization of stochastic neural networks in mean square sense with saturated impulsive input is investigated in this paper. Firstly, the saturated term is handled by polyhedral representation method. When the impulsive sequence is determined by average impulsive interval, impulsive density and mode-dependent impulsive density, the sufficient conditions for stability are proposed, respectively. Then, the ellipsoid and the polyhedron are used to estimate the attractive domain, respectively. By transforming the estimation of the attractive domain into a convex optimization problem, a relatively optimum domain of attraction is obtained. Finally, a three-dimensional continuous time Hopfield neural network example is provided to illustrate the effectiveness and rationality of our proposed theoretical results. •The impulsive control sequence is defined by (mode-dependent) impulsive density.•Estimating attractive domain’s size is converted into solving optimization problems.•Introduce a convex set to handle mode-dependent saturated impulsive input strategies.
doi_str_mv 10.1016/j.neunet.2023.11.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891759159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608023006494</els_id><sourcerecordid>2891759159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3ea140ffb73e3cb072bc61ece65adeaa2b3b0cbdb602aa950d7b16e4a75ab4ae3</originalsourceid><addsrcrecordid>eNp9kMtu1TAQQC0EopfCHyDkJZsEPxI72SChipfUqpt2bY2dierbXDu1nZby9bi6hSWrkWbOvA4h7zlrOePq074NuAUsrWBCtpy3TKgXZMcHPTZCD-Il2bFhlI1iAzshb3LeM8bU0MnX5ETqUeta3ZHbC4RA890GCSn-WmPAUDwsNBewfvG_ofgYKARYHrPPNM61Et0N5OIdrRekytYrHmK6zfTBlxuaodRswYn6w7ot2d8j9WHdylvyaoYl47vneEquv329OvvRnF9-_3n25bxxUonSSATesXm2WqJ0lmlhneLoUPUwIYCw0jJnJ6uYABh7NmnLFXage7AdoDwlH49z1xTvNszFHHx2uCwQMG7ZiGHkuh95P1a0O6IuxZwTzmZN_gDp0XBmnjSbvTlqNk-aDeemaq5tH543bPaA07-mv14r8PkIYP3z3mMy2XkMDief0BUzRf__DX8At8mVIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891759159</pqid></control><display><type>article</type><title>Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deng, Hao ; Li, Chuandong ; Chang, Fei ; Wang, Yinuo</creator><creatorcontrib>Deng, Hao ; Li, Chuandong ; Chang, Fei ; Wang, Yinuo</creatorcontrib><description>The exponential stabilization of stochastic neural networks in mean square sense with saturated impulsive input is investigated in this paper. Firstly, the saturated term is handled by polyhedral representation method. When the impulsive sequence is determined by average impulsive interval, impulsive density and mode-dependent impulsive density, the sufficient conditions for stability are proposed, respectively. Then, the ellipsoid and the polyhedron are used to estimate the attractive domain, respectively. By transforming the estimation of the attractive domain into a convex optimization problem, a relatively optimum domain of attraction is obtained. Finally, a three-dimensional continuous time Hopfield neural network example is provided to illustrate the effectiveness and rationality of our proposed theoretical results. •The impulsive control sequence is defined by (mode-dependent) impulsive density.•Estimating attractive domain’s size is converted into solving optimization problems.•Introduce a convex set to handle mode-dependent saturated impulsive input strategies.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2023.11.026</identifier><identifier>PMID: 37977089</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Attractive domain ; Average impulsive interval ; Impulsive density ; Saturated impulsive input ; Stochastic neural networks</subject><ispartof>Neural networks, 2024-02, Vol.170, p.127-135</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-3ea140ffb73e3cb072bc61ece65adeaa2b3b0cbdb602aa950d7b16e4a75ab4ae3</citedby><cites>FETCH-LOGICAL-c362t-3ea140ffb73e3cb072bc61ece65adeaa2b3b0cbdb602aa950d7b16e4a75ab4ae3</cites><orcidid>0000-0002-6034-4134 ; 0000-0002-3582-1621 ; 0000-0003-1062-0337 ; 0000-0003-1919-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2023.11.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37977089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>Li, Chuandong</creatorcontrib><creatorcontrib>Chang, Fei</creatorcontrib><creatorcontrib>Wang, Yinuo</creatorcontrib><title>Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The exponential stabilization of stochastic neural networks in mean square sense with saturated impulsive input is investigated in this paper. Firstly, the saturated term is handled by polyhedral representation method. When the impulsive sequence is determined by average impulsive interval, impulsive density and mode-dependent impulsive density, the sufficient conditions for stability are proposed, respectively. Then, the ellipsoid and the polyhedron are used to estimate the attractive domain, respectively. By transforming the estimation of the attractive domain into a convex optimization problem, a relatively optimum domain of attraction is obtained. Finally, a three-dimensional continuous time Hopfield neural network example is provided to illustrate the effectiveness and rationality of our proposed theoretical results. •The impulsive control sequence is defined by (mode-dependent) impulsive density.•Estimating attractive domain’s size is converted into solving optimization problems.•Introduce a convex set to handle mode-dependent saturated impulsive input strategies.</description><subject>Attractive domain</subject><subject>Average impulsive interval</subject><subject>Impulsive density</subject><subject>Saturated impulsive input</subject><subject>Stochastic neural networks</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtu1TAQQC0EopfCHyDkJZsEPxI72SChipfUqpt2bY2dierbXDu1nZby9bi6hSWrkWbOvA4h7zlrOePq074NuAUsrWBCtpy3TKgXZMcHPTZCD-Il2bFhlI1iAzshb3LeM8bU0MnX5ETqUeta3ZHbC4RA890GCSn-WmPAUDwsNBewfvG_ofgYKARYHrPPNM61Et0N5OIdrRekytYrHmK6zfTBlxuaodRswYn6w7ot2d8j9WHdylvyaoYl47vneEquv329OvvRnF9-_3n25bxxUonSSATesXm2WqJ0lmlhneLoUPUwIYCw0jJnJ6uYABh7NmnLFXage7AdoDwlH49z1xTvNszFHHx2uCwQMG7ZiGHkuh95P1a0O6IuxZwTzmZN_gDp0XBmnjSbvTlqNk-aDeemaq5tH543bPaA07-mv14r8PkIYP3z3mMy2XkMDief0BUzRf__DX8At8mVIw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Deng, Hao</creator><creator>Li, Chuandong</creator><creator>Chang, Fei</creator><creator>Wang, Yinuo</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6034-4134</orcidid><orcidid>https://orcid.org/0000-0002-3582-1621</orcidid><orcidid>https://orcid.org/0000-0003-1062-0337</orcidid><orcidid>https://orcid.org/0000-0003-1919-7782</orcidid></search><sort><creationdate>202402</creationdate><title>Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input</title><author>Deng, Hao ; Li, Chuandong ; Chang, Fei ; Wang, Yinuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3ea140ffb73e3cb072bc61ece65adeaa2b3b0cbdb602aa950d7b16e4a75ab4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attractive domain</topic><topic>Average impulsive interval</topic><topic>Impulsive density</topic><topic>Saturated impulsive input</topic><topic>Stochastic neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Hao</creatorcontrib><creatorcontrib>Li, Chuandong</creatorcontrib><creatorcontrib>Chang, Fei</creatorcontrib><creatorcontrib>Wang, Yinuo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Hao</au><au>Li, Chuandong</au><au>Chang, Fei</au><au>Wang, Yinuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2024-02</date><risdate>2024</risdate><volume>170</volume><spage>127</spage><epage>135</epage><pages>127-135</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The exponential stabilization of stochastic neural networks in mean square sense with saturated impulsive input is investigated in this paper. Firstly, the saturated term is handled by polyhedral representation method. When the impulsive sequence is determined by average impulsive interval, impulsive density and mode-dependent impulsive density, the sufficient conditions for stability are proposed, respectively. Then, the ellipsoid and the polyhedron are used to estimate the attractive domain, respectively. By transforming the estimation of the attractive domain into a convex optimization problem, a relatively optimum domain of attraction is obtained. Finally, a three-dimensional continuous time Hopfield neural network example is provided to illustrate the effectiveness and rationality of our proposed theoretical results. •The impulsive control sequence is defined by (mode-dependent) impulsive density.•Estimating attractive domain’s size is converted into solving optimization problems.•Introduce a convex set to handle mode-dependent saturated impulsive input strategies.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37977089</pmid><doi>10.1016/j.neunet.2023.11.026</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6034-4134</orcidid><orcidid>https://orcid.org/0000-0002-3582-1621</orcidid><orcidid>https://orcid.org/0000-0003-1062-0337</orcidid><orcidid>https://orcid.org/0000-0003-1919-7782</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2024-02, Vol.170, p.127-135
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2891759159
source Elsevier ScienceDirect Journals Complete
subjects Attractive domain
Average impulsive interval
Impulsive density
Saturated impulsive input
Stochastic neural networks
title Mean square exponential stabilization analysis of stochastic neural networks with saturated impulsive input
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20square%20exponential%20stabilization%20analysis%20of%20stochastic%20neural%20networks%20with%20saturated%20impulsive%20input&rft.jtitle=Neural%20networks&rft.au=Deng,%20Hao&rft.date=2024-02&rft.volume=170&rft.spage=127&rft.epage=135&rft.pages=127-135&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2023.11.026&rft_dat=%3Cproquest_cross%3E2891759159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891759159&rft_id=info:pmid/37977089&rft_els_id=S0893608023006494&rfr_iscdi=true