Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2

The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (46), p.31974-31982
Hauptverfasser: Ye, Lingyun, Liuming Wei, Yu, Hao, Ge, Mengyan, Shi, Xiaobo, Zhang, Hanxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31982
container_issue 46
container_start_page 31974
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Ye, Lingyun
Liuming Wei
Yu, Hao
Ge, Mengyan
Shi, Xiaobo
Zhang, Hanxing
description The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.
doi_str_mv 10.1039/d3cp03896c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891756144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891756144</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-2b51c20beb3fa8d29f0238b55119279026b20058df3f0b747a3238f4d157d3253</originalsourceid><addsrcrecordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvRPCaTyVKKL2jporouedYp02RMMkh_h3_YiNWFq3vgfufcewC4xOgGIypuDdUDoq1o9BGY4LqhlUBtffyneXMKzlLaIoQww3QCPld7b-OmS7nTcBfM2MvcBQ-Dg7a3OsdOyx5Kb2B-s3FXdI7SpyHEDHP4kNHAIYZdlzq_gb7K-8HCxWY5G1dqZcmPKfwmwcFGF0qK1xaqPVwsq85nG8sJma2BB9c5OHGyT_biMKfg9eH-ZfZUzZePz7O7eTUQ3OSKKIY1Qcoq6mRriHCI0FYxhrEgXCDSKIIQa42jDilec0nL3tUGM24oYXQKrn9yS4P30aa8Lj207XvpbRjTmrQCc9bgui7o1T90G8boy3ffVM0pEg2nX3Ozdto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894730967</pqid></control><display><type>article</type><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry</source><creator>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</creator><creatorcontrib>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</creatorcontrib><description>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03896c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Electrical resistivity ; Electron transport ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Lattices ; Semiconductors ; Thermal conductivity ; Thermoelectric materials ; Transport properties ; Transport theory</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31974-31982</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ye, Lingyun</creatorcontrib><creatorcontrib>Liuming Wei</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Ge, Mengyan</creatorcontrib><creatorcontrib>Shi, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Hanxing</creatorcontrib><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><title>Physical chemistry chemical physics : PCCP</title><description>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</description><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattices</subject><subject>Semiconductors</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Transport properties</subject><subject>Transport theory</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvRPCaTyVKKL2jporouedYp02RMMkh_h3_YiNWFq3vgfufcewC4xOgGIypuDdUDoq1o9BGY4LqhlUBtffyneXMKzlLaIoQww3QCPld7b-OmS7nTcBfM2MvcBQ-Dg7a3OsdOyx5Kb2B-s3FXdI7SpyHEDHP4kNHAIYZdlzq_gb7K-8HCxWY5G1dqZcmPKfwmwcFGF0qK1xaqPVwsq85nG8sJma2BB9c5OHGyT_biMKfg9eH-ZfZUzZePz7O7eTUQ3OSKKIY1Qcoq6mRriHCI0FYxhrEgXCDSKIIQa42jDilec0nL3tUGM24oYXQKrn9yS4P30aa8Lj207XvpbRjTmrQCc9bgui7o1T90G8boy3ffVM0pEg2nX3Ozdto</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Ye, Lingyun</creator><creator>Liuming Wei</creator><creator>Yu, Hao</creator><creator>Ge, Mengyan</creator><creator>Shi, Xiaobo</creator><creator>Zhang, Hanxing</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20231129</creationdate><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><author>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-2b51c20beb3fa8d29f0238b55119279026b20058df3f0b747a3238f4d157d3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattices</topic><topic>Semiconductors</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Transport properties</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Lingyun</creatorcontrib><creatorcontrib>Liuming Wei</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Ge, Mengyan</creatorcontrib><creatorcontrib>Shi, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Hanxing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Lingyun</au><au>Liuming Wei</au><au>Yu, Hao</au><au>Ge, Mengyan</au><au>Shi, Xiaobo</au><au>Zhang, Hanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>25</volume><issue>46</issue><spage>31974</spage><epage>31982</epage><pages>31974-31982</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03896c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31974-31982
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2891756144
source Alma/SFX Local Collection; Royal Society of Chemistry
subjects Electrical resistivity
Electron transport
Figure of merit
First principles
Heat conductivity
Heat transfer
Lattices
Semiconductors
Thermal conductivity
Thermoelectric materials
Transport properties
Transport theory
title Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20modulation%20of%20electrical%20and%20thermal%20transport%20toward%20promising%20n-type%20MgOCuSbSe2%20thermoelectric%20performance%20by%20MO-intercalated%20CuSbSe2&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ye,%20Lingyun&rft.date=2023-11-29&rft.volume=25&rft.issue=46&rft.spage=31974&rft.epage=31982&rft.pages=31974-31982&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03896c&rft_dat=%3Cproquest%3E2891756144%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894730967&rft_id=info:pmid/&rfr_iscdi=true