Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2
The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we u...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (46), p.31974-31982 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31982 |
---|---|
container_issue | 46 |
container_start_page | 31974 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Ye, Lingyun Liuming Wei Yu, Hao Ge, Mengyan Shi, Xiaobo Zhang, Hanxing |
description | The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials. |
doi_str_mv | 10.1039/d3cp03896c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891756144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891756144</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-2b51c20beb3fa8d29f0238b55119279026b20058df3f0b747a3238f4d157d3253</originalsourceid><addsrcrecordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvRPCaTyVKKL2jporouedYp02RMMkh_h3_YiNWFq3vgfufcewC4xOgGIypuDdUDoq1o9BGY4LqhlUBtffyneXMKzlLaIoQww3QCPld7b-OmS7nTcBfM2MvcBQ-Dg7a3OsdOyx5Kb2B-s3FXdI7SpyHEDHP4kNHAIYZdlzq_gb7K-8HCxWY5G1dqZcmPKfwmwcFGF0qK1xaqPVwsq85nG8sJma2BB9c5OHGyT_biMKfg9eH-ZfZUzZePz7O7eTUQ3OSKKIY1Qcoq6mRriHCI0FYxhrEgXCDSKIIQa42jDilec0nL3tUGM24oYXQKrn9yS4P30aa8Lj207XvpbRjTmrQCc9bgui7o1T90G8boy3ffVM0pEg2nX3Ozdto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894730967</pqid></control><display><type>article</type><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry</source><creator>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</creator><creatorcontrib>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</creatorcontrib><description>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03896c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Electrical resistivity ; Electron transport ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Lattices ; Semiconductors ; Thermal conductivity ; Thermoelectric materials ; Transport properties ; Transport theory</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31974-31982</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ye, Lingyun</creatorcontrib><creatorcontrib>Liuming Wei</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Ge, Mengyan</creatorcontrib><creatorcontrib>Shi, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Hanxing</creatorcontrib><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><title>Physical chemistry chemical physics : PCCP</title><description>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</description><subject>Electrical resistivity</subject><subject>Electron transport</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattices</subject><subject>Semiconductors</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Transport properties</subject><subject>Transport theory</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvRPCaTyVKKL2jporouedYp02RMMkh_h3_YiNWFq3vgfufcewC4xOgGIypuDdUDoq1o9BGY4LqhlUBtffyneXMKzlLaIoQww3QCPld7b-OmS7nTcBfM2MvcBQ-Dg7a3OsdOyx5Kb2B-s3FXdI7SpyHEDHP4kNHAIYZdlzq_gb7K-8HCxWY5G1dqZcmPKfwmwcFGF0qK1xaqPVwsq85nG8sJma2BB9c5OHGyT_biMKfg9eH-ZfZUzZePz7O7eTUQ3OSKKIY1Qcoq6mRriHCI0FYxhrEgXCDSKIIQa42jDilec0nL3tUGM24oYXQKrn9yS4P30aa8Lj207XvpbRjTmrQCc9bgui7o1T90G8boy3ffVM0pEg2nX3Ozdto</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>Ye, Lingyun</creator><creator>Liuming Wei</creator><creator>Yu, Hao</creator><creator>Ge, Mengyan</creator><creator>Shi, Xiaobo</creator><creator>Zhang, Hanxing</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20231129</creationdate><title>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</title><author>Ye, Lingyun ; Liuming Wei ; Yu, Hao ; Ge, Mengyan ; Shi, Xiaobo ; Zhang, Hanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-2b51c20beb3fa8d29f0238b55119279026b20058df3f0b747a3238f4d157d3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrical resistivity</topic><topic>Electron transport</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattices</topic><topic>Semiconductors</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Transport properties</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Lingyun</creatorcontrib><creatorcontrib>Liuming Wei</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Ge, Mengyan</creatorcontrib><creatorcontrib>Shi, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Hanxing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Lingyun</au><au>Liuming Wei</au><au>Yu, Hao</au><au>Ge, Mengyan</au><au>Shi, Xiaobo</au><au>Zhang, Hanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>25</volume><issue>46</issue><spage>31974</spage><epage>31982</epage><pages>31974-31982</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The layered ternary CuSbSe2 semiconductor with ultralow thermal conductivity is particularly suitable for thermoelectric applications. Nevertheless, its poor electrical conductivity greatly lowers the dimensionless figure of merit ZT and accordingly limits its thermoelectric applications. Here, we use first-principles calculations combined with semi-classical Boltzmann transport theory to evaluate the thermoelectric properties of MO-intercalated (M = Mg, Ca, Sr, and Ba) CuSbSe2. Compared with CuSbSe2, MO-intercalated CuSbSe2 semiconductors, as a new class of semiconductors, host distorted lattices with low symmetry monoclinic structures. Such a structure feature provides desired channels for electron transport between adjacent layers and accordingly enhances electrical transport properties. Meanwhile, the MO intercalation effectively softens phonons and gives rise to an ultralow lattice thermal conductivity in MOCuSbSe2. These synergistically yield a high figure of merit ZT of ∼4.17 for MgO-intercalated CuSbSe2 at 200 K with electron doping being n = 1018 cm−3. Our study provides an effective route to improve the thermoelectric performance of layered CuSbSe2 by designing new multicomponent thermoelectric compounds with alternatively stacked [CuSbSe2] (electronic conduction units) and [MO] (electronic insulation units) layers. The approach can be extended to similar chalcostibite compounds for screening and designing thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3cp03896c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (46), p.31974-31982 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2891756144 |
source | Alma/SFX Local Collection; Royal Society of Chemistry |
subjects | Electrical resistivity Electron transport Figure of merit First principles Heat conductivity Heat transfer Lattices Semiconductors Thermal conductivity Thermoelectric materials Transport properties Transport theory |
title | Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe2 thermoelectric performance by MO-intercalated CuSbSe2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20modulation%20of%20electrical%20and%20thermal%20transport%20toward%20promising%20n-type%20MgOCuSbSe2%20thermoelectric%20performance%20by%20MO-intercalated%20CuSbSe2&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ye,%20Lingyun&rft.date=2023-11-29&rft.volume=25&rft.issue=46&rft.spage=31974&rft.epage=31982&rft.pages=31974-31982&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03896c&rft_dat=%3Cproquest%3E2891756144%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894730967&rft_id=info:pmid/&rfr_iscdi=true |