Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification
Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) a...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2023-12, Vol.167, p.107696-107696, Article 107696 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107696 |
---|---|
container_issue | |
container_start_page | 107696 |
container_title | Computers in biology and medicine |
container_volume | 167 |
creator | Sadegh-Zadeh, Seyed-Ali Sakha, Hanie Movahedi, Sobhan Fasihi Harandi, Aniseh Ghaffari, Samad Javanshir, Elnaz Ali, Syed Ahsan Hooshanginezhad, Zahra Hajizadeh, Reza |
description | Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients.
To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables.
This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities.
The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance.
The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients. |
doi_str_mv | 10.1016/j.compbiomed.2023.107696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891753646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891753646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fd475c85a503b3b29f852a5456fe8a2cf8d08196b05c53b394dad32f13bb17cc3</originalsourceid><addsrcrecordid>eNpdkc2OFCEUhYnROD2jr2BI3Liplp-CAnedyaiTTOJG1wQoqoeWghIok34iX1MqPRMTN0C43z3nwgEAYrTHCPOPp71N82J8mt24J4jQdj1wyV-AHRaD7BCj_UuwQwijrheEXYHrUk4IoR5R9Bpc0UEOksp-B_4cxt86Wh-PcMnpGFOp3rajs774FKGPcFnDnKLOZ-hmk4Iv8yd4gDb46K0OUMcRBm1S1jXlc2d0cSPUufrJW9_qPlYXgj-6aB3US3PR9hFOKUMXH5t1o53O4QznlKsOvp5h9uUnLLUpbiJtTfENeDXpUNzbp_0G_Ph89_32a_fw7cv97eGhs1TS2k1jPzArmGaIGmqInAQjmvWMT05oYicxIoElN4hZ1gjZj3qkZMLUGDxYS2_Ah4tum_PX6kpVsy-2PUBHl9aiiJB4YJT3vKHv_0NPac2xTbdRhHDOMWqUuFA2p1Kym9SS_dx-U2GktjDVSf0LU21hqkuYrfXdk8Fqttpz43N69C92iKNW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892266610</pqid></control><display><type>article</type><title>Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Sadegh-Zadeh, Seyed-Ali ; Sakha, Hanie ; Movahedi, Sobhan ; Fasihi Harandi, Aniseh ; Ghaffari, Samad ; Javanshir, Elnaz ; Ali, Syed Ahsan ; Hooshanginezhad, Zahra ; Hajizadeh, Reza</creator><creatorcontrib>Sadegh-Zadeh, Seyed-Ali ; Sakha, Hanie ; Movahedi, Sobhan ; Fasihi Harandi, Aniseh ; Ghaffari, Samad ; Javanshir, Elnaz ; Ali, Syed Ahsan ; Hooshanginezhad, Zahra ; Hajizadeh, Reza</creatorcontrib><description>Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients.
To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables.
This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities.
The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance.
The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107696</identifier><identifier>PMID: 37979394</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Clinical decision making ; Electronic health records ; Embolism ; Embolisms ; Emergency medical services ; Humans ; Intensive care ; Laboratories ; Laboratory tests ; Learning algorithms ; Machine Learning ; Medical prognosis ; Mortality ; Mortality risk ; Oversampling ; Patients ; Performance enhancement ; Performance evaluation ; Physiology ; Predictions ; Prognosis ; Pulmonary arteries ; Pulmonary Embolism - diagnosis ; Pulmonary embolisms ; Recall ; Risk Assessment ; Time series</subject><ispartof>Computers in biology and medicine, 2023-12, Vol.167, p.107696-107696, Article 107696</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2023. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fd475c85a503b3b29f852a5456fe8a2cf8d08196b05c53b394dad32f13bb17cc3</citedby><cites>FETCH-LOGICAL-c393t-fd475c85a503b3b29f852a5456fe8a2cf8d08196b05c53b394dad32f13bb17cc3</cites><orcidid>0000-0002-8174-8824 ; 0000-0001-6197-3410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2892266610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37979394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadegh-Zadeh, Seyed-Ali</creatorcontrib><creatorcontrib>Sakha, Hanie</creatorcontrib><creatorcontrib>Movahedi, Sobhan</creatorcontrib><creatorcontrib>Fasihi Harandi, Aniseh</creatorcontrib><creatorcontrib>Ghaffari, Samad</creatorcontrib><creatorcontrib>Javanshir, Elnaz</creatorcontrib><creatorcontrib>Ali, Syed Ahsan</creatorcontrib><creatorcontrib>Hooshanginezhad, Zahra</creatorcontrib><creatorcontrib>Hajizadeh, Reza</creatorcontrib><title>Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients.
To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables.
This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities.
The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance.
The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clinical decision making</subject><subject>Electronic health records</subject><subject>Embolism</subject><subject>Embolisms</subject><subject>Emergency medical services</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Mortality</subject><subject>Mortality risk</subject><subject>Oversampling</subject><subject>Patients</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Physiology</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Pulmonary arteries</subject><subject>Pulmonary Embolism - diagnosis</subject><subject>Pulmonary embolisms</subject><subject>Recall</subject><subject>Risk Assessment</subject><subject>Time series</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc2OFCEUhYnROD2jr2BI3Liplp-CAnedyaiTTOJG1wQoqoeWghIok34iX1MqPRMTN0C43z3nwgEAYrTHCPOPp71N82J8mt24J4jQdj1wyV-AHRaD7BCj_UuwQwijrheEXYHrUk4IoR5R9Bpc0UEOksp-B_4cxt86Wh-PcMnpGFOp3rajs774FKGPcFnDnKLOZ-hmk4Iv8yd4gDb46K0OUMcRBm1S1jXlc2d0cSPUufrJW9_qPlYXgj-6aB3US3PR9hFOKUMXH5t1o53O4QznlKsOvp5h9uUnLLUpbiJtTfENeDXpUNzbp_0G_Ph89_32a_fw7cv97eGhs1TS2k1jPzArmGaIGmqInAQjmvWMT05oYicxIoElN4hZ1gjZj3qkZMLUGDxYS2_Ah4tum_PX6kpVsy-2PUBHl9aiiJB4YJT3vKHv_0NPac2xTbdRhHDOMWqUuFA2p1Kym9SS_dx-U2GktjDVSf0LU21hqkuYrfXdk8Fqttpz43N69C92iKNW</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Sadegh-Zadeh, Seyed-Ali</creator><creator>Sakha, Hanie</creator><creator>Movahedi, Sobhan</creator><creator>Fasihi Harandi, Aniseh</creator><creator>Ghaffari, Samad</creator><creator>Javanshir, Elnaz</creator><creator>Ali, Syed Ahsan</creator><creator>Hooshanginezhad, Zahra</creator><creator>Hajizadeh, Reza</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8174-8824</orcidid><orcidid>https://orcid.org/0000-0001-6197-3410</orcidid></search><sort><creationdate>202312</creationdate><title>Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification</title><author>Sadegh-Zadeh, Seyed-Ali ; Sakha, Hanie ; Movahedi, Sobhan ; Fasihi Harandi, Aniseh ; Ghaffari, Samad ; Javanshir, Elnaz ; Ali, Syed Ahsan ; Hooshanginezhad, Zahra ; Hajizadeh, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fd475c85a503b3b29f852a5456fe8a2cf8d08196b05c53b394dad32f13bb17cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clinical decision making</topic><topic>Electronic health records</topic><topic>Embolism</topic><topic>Embolisms</topic><topic>Emergency medical services</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Mortality</topic><topic>Mortality risk</topic><topic>Oversampling</topic><topic>Patients</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Physiology</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Pulmonary arteries</topic><topic>Pulmonary Embolism - diagnosis</topic><topic>Pulmonary embolisms</topic><topic>Recall</topic><topic>Risk Assessment</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadegh-Zadeh, Seyed-Ali</creatorcontrib><creatorcontrib>Sakha, Hanie</creatorcontrib><creatorcontrib>Movahedi, Sobhan</creatorcontrib><creatorcontrib>Fasihi Harandi, Aniseh</creatorcontrib><creatorcontrib>Ghaffari, Samad</creatorcontrib><creatorcontrib>Javanshir, Elnaz</creatorcontrib><creatorcontrib>Ali, Syed Ahsan</creatorcontrib><creatorcontrib>Hooshanginezhad, Zahra</creatorcontrib><creatorcontrib>Hajizadeh, Reza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadegh-Zadeh, Seyed-Ali</au><au>Sakha, Hanie</au><au>Movahedi, Sobhan</au><au>Fasihi Harandi, Aniseh</au><au>Ghaffari, Samad</au><au>Javanshir, Elnaz</au><au>Ali, Syed Ahsan</au><au>Hooshanginezhad, Zahra</au><au>Hajizadeh, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-12</date><risdate>2023</risdate><volume>167</volume><spage>107696</spage><epage>107696</epage><pages>107696-107696</pages><artnum>107696</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients.
To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables.
This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities.
The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance.
The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>37979394</pmid><doi>10.1016/j.compbiomed.2023.107696</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8174-8824</orcidid><orcidid>https://orcid.org/0000-0001-6197-3410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2023-12, Vol.167, p.107696-107696, Article 107696 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2891753646 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Accuracy Algorithms Artificial Intelligence Clinical decision making Electronic health records Embolism Embolisms Emergency medical services Humans Intensive care Laboratories Laboratory tests Learning algorithms Machine Learning Medical prognosis Mortality Mortality risk Oversampling Patients Performance enhancement Performance evaluation Physiology Predictions Prognosis Pulmonary arteries Pulmonary Embolism - diagnosis Pulmonary embolisms Recall Risk Assessment Time series |
title | Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20prognostic%20precision%20in%20pulmonary%20embolism:%20A%20clinical%20and%20laboratory-based%20artificial%20intelligence%20approach%20for%20enhanced%20early%20mortality%20risk%20stratification&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Sadegh-Zadeh,%20Seyed-Ali&rft.date=2023-12&rft.volume=167&rft.spage=107696&rft.epage=107696&rft.pages=107696-107696&rft.artnum=107696&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107696&rft_dat=%3Cproquest_cross%3E2891753646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892266610&rft_id=info:pmid/37979394&rfr_iscdi=true |