Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries

Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-04, Vol.20 (14), p.e2308113-n/a
Hauptverfasser: Huang, Jinghao, Li, Shi, Wang, You, Kim, Eric Youngsam, Yang, Zhenzhen, Chen, Dongchang, Cheng, Lei, Luo, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e2308113
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Huang, Jinghao
Li, Shi
Wang, You
Kim, Eric Youngsam
Yang, Zhenzhen
Chen, Dongchang
Cheng, Lei
Luo, Chao
description Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in Na‐ion batteries. The planar carboxylate compound outperforms the twisted carboxylate compounds in terms of specific capacity, cycle life, and rate capability due to improved structure stability and aromaticity of the planar conjugation structure.
doi_str_mv 10.1002/smll.202308113
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891752534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891752534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4003-bbaba9925ca3bfcd57746105323b8b8b1541714092af3589f22b89ecdacb9ea43</originalsourceid><addsrcrecordid>eNqFkc1OGzEUhS1UBCmwZVlZdNNNgn_G8XiZRhSQEkDiZ2vZzrWYaGac2hNBdn0EnpEnwVEgSGwqL3xlf-fIxwehY0oGlBB2mpq6HjDCOCkp5TuoR4eU94clU9-2MyX76HtKc0I4ZYXcQ_tcKslYKXro4XZhusrU-Mx7cB0OLe4eAd9A9CE2pnWAg8djE214XtWmAzxqwwzwNI8x6xKuWnxlXv-9XGbpb9OtjyEdol2fL-HofT9A93_O7sYX_cn1-eV4NOm7Ir-mb62xRikmnOHWu5mQshhSIjjjtsyLioJKWhDFjOeiVJ4xWypwM-OsAlPwA3Sy8Q2pq3RyVQfu0YW2zVl0zloSyTL0awMtYvi7hNTppkoO6tq0EJZJs1JRKZjga7-fX9B5WMY2R9A8_54smBAyU4MN5WJIKYLXi1g1Jq40JXpdi17Xore1ZMGPd9ulbWC2xT96yIDaAE9VDav_2Onb6WTyaf4Gf_yYpw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031742557</pqid></control><display><type>article</type><title>Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Huang, Jinghao ; Li, Shi ; Wang, You ; Kim, Eric Youngsam ; Yang, Zhenzhen ; Chen, Dongchang ; Cheng, Lei ; Luo, Chao</creator><creatorcontrib>Huang, Jinghao ; Li, Shi ; Wang, You ; Kim, Eric Youngsam ; Yang, Zhenzhen ; Chen, Dongchang ; Cheng, Lei ; Luo, Chao ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in Na‐ion batteries. The planar carboxylate compound outperforms the twisted carboxylate compounds in terms of specific capacity, cycle life, and rate capability due to improved structure stability and aromaticity of the planar conjugation structure.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202308113</identifier><identifier>PMID: 37972285</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Aromatic compounds ; carboxylate ; Carboxylates ; Conjugation ; Electrochemical analysis ; Electrode materials ; high-temperature batteries ; Na-ion batteries ; Planar structures ; Polyanilines ; Rechargeable batteries ; Sodium-ion batteries ; spatial effect</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (14), p.e2308113-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4003-bbaba9925ca3bfcd57746105323b8b8b1541714092af3589f22b89ecdacb9ea43</citedby><cites>FETCH-LOGICAL-c4003-bbaba9925ca3bfcd57746105323b8b8b1541714092af3589f22b89ecdacb9ea43</cites><orcidid>0000-0001-8497-8548 ; 0000000184978548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202308113$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202308113$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37972285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2478072$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Kim, Eric Youngsam</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Dongchang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in Na‐ion batteries. The planar carboxylate compound outperforms the twisted carboxylate compounds in terms of specific capacity, cycle life, and rate capability due to improved structure stability and aromaticity of the planar conjugation structure.</description><subject>Anodes</subject><subject>Aromatic compounds</subject><subject>carboxylate</subject><subject>Carboxylates</subject><subject>Conjugation</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>high-temperature batteries</subject><subject>Na-ion batteries</subject><subject>Planar structures</subject><subject>Polyanilines</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>spatial effect</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OGzEUhS1UBCmwZVlZdNNNgn_G8XiZRhSQEkDiZ2vZzrWYaGac2hNBdn0EnpEnwVEgSGwqL3xlf-fIxwehY0oGlBB2mpq6HjDCOCkp5TuoR4eU94clU9-2MyX76HtKc0I4ZYXcQ_tcKslYKXro4XZhusrU-Mx7cB0OLe4eAd9A9CE2pnWAg8djE214XtWmAzxqwwzwNI8x6xKuWnxlXv-9XGbpb9OtjyEdol2fL-HofT9A93_O7sYX_cn1-eV4NOm7Ir-mb62xRikmnOHWu5mQshhSIjjjtsyLioJKWhDFjOeiVJ4xWypwM-OsAlPwA3Sy8Q2pq3RyVQfu0YW2zVl0zloSyTL0awMtYvi7hNTppkoO6tq0EJZJs1JRKZjga7-fX9B5WMY2R9A8_54smBAyU4MN5WJIKYLXi1g1Jq40JXpdi17Xore1ZMGPd9ulbWC2xT96yIDaAE9VDav_2Onb6WTyaf4Gf_yYpw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Huang, Jinghao</creator><creator>Li, Shi</creator><creator>Wang, You</creator><creator>Kim, Eric Youngsam</creator><creator>Yang, Zhenzhen</creator><creator>Chen, Dongchang</creator><creator>Cheng, Lei</creator><creator>Luo, Chao</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8497-8548</orcidid><orcidid>https://orcid.org/0000000184978548</orcidid></search><sort><creationdate>20240401</creationdate><title>Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries</title><author>Huang, Jinghao ; Li, Shi ; Wang, You ; Kim, Eric Youngsam ; Yang, Zhenzhen ; Chen, Dongchang ; Cheng, Lei ; Luo, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4003-bbaba9925ca3bfcd57746105323b8b8b1541714092af3589f22b89ecdacb9ea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Aromatic compounds</topic><topic>carboxylate</topic><topic>Carboxylates</topic><topic>Conjugation</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>high-temperature batteries</topic><topic>Na-ion batteries</topic><topic>Planar structures</topic><topic>Polyanilines</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>spatial effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><creatorcontrib>Kim, Eric Youngsam</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Chen, Dongchang</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinghao</au><au>Li, Shi</au><au>Wang, You</au><au>Kim, Eric Youngsam</au><au>Yang, Zhenzhen</au><au>Chen, Dongchang</au><au>Cheng, Lei</au><au>Luo, Chao</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>14</issue><spage>e2308113</spage><epage>n/a</epage><pages>e2308113-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Developing low‐voltage carboxylate anode materials is critical for achieving low‐cost, high‐performance, and sustainable Na‐ion batteries (NIBs). However, the structure design rationale and structure‐performance correlation for organic carboxylates in NIBs remains elusive. Herein, the spatial effect on the performance of carboxylate anode materials is studied by introducing heteroatoms in the conjugation structure and manipulating the positions of carboxylate groups in the aromatic rings. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in NIBs. Among the carboxylates, disodium 2,2’‐bipyridine‐5,5’‐dicarboxylate (2255‐Na) with a planar structure outperforms the others in terms of highest specific capacity (210 mAh g−1), longest cycle life (2000 cycles), and best rate capability (up to 5 A g−1). The cyclic stability and redox mechanism of 2255‐Na in NIBs are exploited by various characterization techniques. Moreover, high‐temperature (up to 100 °C) and all‐organic batteries based on a 2255‐Na anode, a polyaniline (PANI) cathode, and an ether‐based electrolyte are achieved and exhibited exceptional electrochemical performance. Therefore, this work demonstrates that designing organic carboxylates with extended planar conjugation structures is an effective strategy to achieve high‐performance and sustainable NIBs. Planar and twisted organic carboxylates are designed and synthesized to gain insight into the impact of geometric structures to the electrochemical performance of carboxylate anodes in Na‐ion batteries. The planar carboxylate compound outperforms the twisted carboxylate compounds in terms of specific capacity, cycle life, and rate capability due to improved structure stability and aromaticity of the planar conjugation structure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37972285</pmid><doi>10.1002/smll.202308113</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8497-8548</orcidid><orcidid>https://orcid.org/0000000184978548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-04, Vol.20 (14), p.e2308113-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2891752534
source Wiley Online Library - AutoHoldings Journals
subjects Anodes
Aromatic compounds
carboxylate
Carboxylates
Conjugation
Electrochemical analysis
Electrode materials
high-temperature batteries
Na-ion batteries
Planar structures
Polyanilines
Rechargeable batteries
Sodium-ion batteries
spatial effect
title Spatial Effect on the Performance of Carboxylate Anode Materials in Na‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Effect%20on%20the%20Performance%20of%20Carboxylate%20Anode%20Materials%20in%20Na%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Huang,%20Jinghao&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2024-04-01&rft.volume=20&rft.issue=14&rft.spage=e2308113&rft.epage=n/a&rft.pages=e2308113-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202308113&rft_dat=%3Cproquest_osti_%3E2891752534%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031742557&rft_id=info:pmid/37972285&rfr_iscdi=true