Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode

Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-11, Vol.14 (47), p.10537-10544
Hauptverfasser: Wan, Hui, Li, Shu, Zhang, Xiang-Long, Wu, Lichen, Liu, Zhixiao, Liu, Guangdong, Gao, Caitian, Huang, Wei-Qing, Deng, Huiqiu, Hu, Wangyu, Gao, Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10544
container_issue 47
container_start_page 10537
container_title The journal of physical chemistry letters
container_volume 14
creator Wan, Hui
Li, Shu
Zhang, Xiang-Long
Wu, Lichen
Liu, Zhixiao
Liu, Guangdong
Gao, Caitian
Huang, Wei-Qing
Deng, Huiqiu
Hu, Wangyu
Gao, Fei
description Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.
doi_str_mv 10.1021/acs.jpclett.3c02437
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891752448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891752448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKtP4GaWbqbmZ36SpRarhSkK6jp8Tb5pU6aTmqRC394p7cLVvYvDhXsIuWd0wihnj2DiZLMzHaY0EYbyQtQXZMRUIfOayfLyX78mNzFuKK0UlfWIzBaw6jG6_TZbuORWkJzvs2dcw6_zIXN99sHzBg4Y0Gaf3g5gPj8SkBKGQzaFtPYWb8lVC13Eu3OOyffs5Wv6ljfvr_PpU5MbLnnKVSus4qWxSslW1SWzprJyyZAVfClQLEug3FatpVAZHF6YCgrJKuAFtNJUYkweTru74H_2GJPeumiw66BHv4-aS8XqkheFHFBxQk3wMQZs9S64LYSDZlQfrenBmj5b02dr4g9pX2OF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891752448</pqid></control><display><type>article</type><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><source>American Chemical Society Journals</source><creator>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</creator><creatorcontrib>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</creatorcontrib><description>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02437</identifier><language>eng</language><ispartof>The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10537-10544</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</citedby><cites>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</cites><orcidid>0000-0003-1453-6327 ; 0000-0001-6739-5076 ; 0000-0001-8986-104X ; 0000-0002-5354-4701 ; 0000-0002-9621-8332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Hui</creatorcontrib><creatorcontrib>Li, Shu</creatorcontrib><creatorcontrib>Zhang, Xiang-Long</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Liu, Zhixiao</creatorcontrib><creatorcontrib>Liu, Guangdong</creatorcontrib><creatorcontrib>Gao, Caitian</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><title>The journal of physical chemistry letters</title><description>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEYRYMoWKtP4GaWbqbmZ36SpRarhSkK6jp8Tb5pU6aTmqRC394p7cLVvYvDhXsIuWd0wihnj2DiZLMzHaY0EYbyQtQXZMRUIfOayfLyX78mNzFuKK0UlfWIzBaw6jG6_TZbuORWkJzvs2dcw6_zIXN99sHzBg4Y0Gaf3g5gPj8SkBKGQzaFtPYWb8lVC13Eu3OOyffs5Wv6ljfvr_PpU5MbLnnKVSus4qWxSslW1SWzprJyyZAVfClQLEug3FatpVAZHF6YCgrJKuAFtNJUYkweTru74H_2GJPeumiw66BHv4-aS8XqkheFHFBxQk3wMQZs9S64LYSDZlQfrenBmj5b02dr4g9pX2OF</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Wan, Hui</creator><creator>Li, Shu</creator><creator>Zhang, Xiang-Long</creator><creator>Wu, Lichen</creator><creator>Liu, Zhixiao</creator><creator>Liu, Guangdong</creator><creator>Gao, Caitian</creator><creator>Huang, Wei-Qing</creator><creator>Deng, Huiqiu</creator><creator>Hu, Wangyu</creator><creator>Gao, Fei</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1453-6327</orcidid><orcidid>https://orcid.org/0000-0001-6739-5076</orcidid><orcidid>https://orcid.org/0000-0001-8986-104X</orcidid><orcidid>https://orcid.org/0000-0002-5354-4701</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></search><sort><creationdate>20231130</creationdate><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><author>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hui</creatorcontrib><creatorcontrib>Li, Shu</creatorcontrib><creatorcontrib>Zhang, Xiang-Long</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Liu, Zhixiao</creatorcontrib><creatorcontrib>Liu, Guangdong</creatorcontrib><creatorcontrib>Gao, Caitian</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hui</au><au>Li, Shu</au><au>Zhang, Xiang-Long</au><au>Wu, Lichen</au><au>Liu, Zhixiao</au><au>Liu, Guangdong</au><au>Gao, Caitian</au><au>Huang, Wei-Qing</au><au>Deng, Huiqiu</au><au>Hu, Wangyu</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>14</volume><issue>47</issue><spage>10537</spage><epage>10544</epage><pages>10537-10544</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</abstract><doi>10.1021/acs.jpclett.3c02437</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1453-6327</orcidid><orcidid>https://orcid.org/0000-0001-6739-5076</orcidid><orcidid>https://orcid.org/0000-0001-8986-104X</orcidid><orcidid>https://orcid.org/0000-0002-5354-4701</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10537-10544
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2891752448
source American Chemical Society Journals
title Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Mitigation%20Behavior%20in%20P2-Layered%20Sodium-Ion%20Battery%20Cathode&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wan,%20Hui&rft.date=2023-11-30&rft.volume=14&rft.issue=47&rft.spage=10537&rft.epage=10544&rft.pages=10537-10544&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02437&rft_dat=%3Cproquest_cross%3E2891752448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891752448&rft_id=info:pmid/&rfr_iscdi=true