Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode
Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-11, Vol.14 (47), p.10537-10544 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10544 |
---|---|
container_issue | 47 |
container_start_page | 10537 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Wan, Hui Li, Shu Zhang, Xiang-Long Wu, Lichen Liu, Zhixiao Liu, Guangdong Gao, Caitian Huang, Wei-Qing Deng, Huiqiu Hu, Wangyu Gao, Fei |
description | Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies. |
doi_str_mv | 10.1021/acs.jpclett.3c02437 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891752448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891752448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</originalsourceid><addsrcrecordid>eNpNkM1KAzEYRYMoWKtP4GaWbqbmZ36SpRarhSkK6jp8Tb5pU6aTmqRC394p7cLVvYvDhXsIuWd0wihnj2DiZLMzHaY0EYbyQtQXZMRUIfOayfLyX78mNzFuKK0UlfWIzBaw6jG6_TZbuORWkJzvs2dcw6_zIXN99sHzBg4Y0Gaf3g5gPj8SkBKGQzaFtPYWb8lVC13Eu3OOyffs5Wv6ljfvr_PpU5MbLnnKVSus4qWxSslW1SWzprJyyZAVfClQLEug3FatpVAZHF6YCgrJKuAFtNJUYkweTru74H_2GJPeumiw66BHv4-aS8XqkheFHFBxQk3wMQZs9S64LYSDZlQfrenBmj5b02dr4g9pX2OF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891752448</pqid></control><display><type>article</type><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><source>American Chemical Society Journals</source><creator>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</creator><creatorcontrib>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</creatorcontrib><description>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02437</identifier><language>eng</language><ispartof>The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10537-10544</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</citedby><cites>FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</cites><orcidid>0000-0003-1453-6327 ; 0000-0001-6739-5076 ; 0000-0001-8986-104X ; 0000-0002-5354-4701 ; 0000-0002-9621-8332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Hui</creatorcontrib><creatorcontrib>Li, Shu</creatorcontrib><creatorcontrib>Zhang, Xiang-Long</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Liu, Zhixiao</creatorcontrib><creatorcontrib>Liu, Guangdong</creatorcontrib><creatorcontrib>Gao, Caitian</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><title>The journal of physical chemistry letters</title><description>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEYRYMoWKtP4GaWbqbmZ36SpRarhSkK6jp8Tb5pU6aTmqRC394p7cLVvYvDhXsIuWd0wihnj2DiZLMzHaY0EYbyQtQXZMRUIfOayfLyX78mNzFuKK0UlfWIzBaw6jG6_TZbuORWkJzvs2dcw6_zIXN99sHzBg4Y0Gaf3g5gPj8SkBKGQzaFtPYWb8lVC13Eu3OOyffs5Wv6ljfvr_PpU5MbLnnKVSus4qWxSslW1SWzprJyyZAVfClQLEug3FatpVAZHF6YCgrJKuAFtNJUYkweTru74H_2GJPeumiw66BHv4-aS8XqkheFHFBxQk3wMQZs9S64LYSDZlQfrenBmj5b02dr4g9pX2OF</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Wan, Hui</creator><creator>Li, Shu</creator><creator>Zhang, Xiang-Long</creator><creator>Wu, Lichen</creator><creator>Liu, Zhixiao</creator><creator>Liu, Guangdong</creator><creator>Gao, Caitian</creator><creator>Huang, Wei-Qing</creator><creator>Deng, Huiqiu</creator><creator>Hu, Wangyu</creator><creator>Gao, Fei</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1453-6327</orcidid><orcidid>https://orcid.org/0000-0001-6739-5076</orcidid><orcidid>https://orcid.org/0000-0001-8986-104X</orcidid><orcidid>https://orcid.org/0000-0002-5354-4701</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></search><sort><creationdate>20231130</creationdate><title>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</title><author>Wan, Hui ; Li, Shu ; Zhang, Xiang-Long ; Wu, Lichen ; Liu, Zhixiao ; Liu, Guangdong ; Gao, Caitian ; Huang, Wei-Qing ; Deng, Huiqiu ; Hu, Wangyu ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9f3d925cd998f9751dc6d8b1e142b3e3b5a02d6fd0a6ce437c6a4816a24af8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hui</creatorcontrib><creatorcontrib>Li, Shu</creatorcontrib><creatorcontrib>Zhang, Xiang-Long</creatorcontrib><creatorcontrib>Wu, Lichen</creatorcontrib><creatorcontrib>Liu, Zhixiao</creatorcontrib><creatorcontrib>Liu, Guangdong</creatorcontrib><creatorcontrib>Gao, Caitian</creatorcontrib><creatorcontrib>Huang, Wei-Qing</creatorcontrib><creatorcontrib>Deng, Huiqiu</creatorcontrib><creatorcontrib>Hu, Wangyu</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hui</au><au>Li, Shu</au><au>Zhang, Xiang-Long</au><au>Wu, Lichen</au><au>Liu, Zhixiao</au><au>Liu, Guangdong</au><au>Gao, Caitian</au><au>Huang, Wei-Qing</au><au>Deng, Huiqiu</au><au>Hu, Wangyu</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>14</volume><issue>47</issue><spage>10537</spage><epage>10544</epage><pages>10537-10544</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Heteroatom incorporation can effectively suppress the phase transition of layered sodium-ion battery cathode, but heteroatom behaviors during operating conditions are not completely understood at the atomic scale. Here, density functional theory calculations are combined with experiments to explore the mitigation behavior of Mg dopant and its mechanisms under operating conditions in P2-Na0.67Ni0.33Mn0.67O2. The void formed by Na extraction will pump some Mg dopants into Na layers from TM layers, and the collective diffusion of more than one Mg ion most likely occurs when the Mg content is relatively high in the TM layer, finally aggregating to form Mg-enrich regions (i.e., Mg segregation) apart from Ni vacancies. The void-pump-effect-induced Mg segregation effectively suppresses the P2-O2 phase transition owing to the stronger Mg-O electrostatic attraction that enhances the integrate of two adjacent oxygen layers and prevents the crack growth by mitigating the lattice volume variation under high-voltage cycling. Our work provides a fundamental understanding of heteroatom mitigation behavior in layered cathodes at the atomic level for next-generation energy storage technologies.</abstract><doi>10.1021/acs.jpclett.3c02437</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1453-6327</orcidid><orcidid>https://orcid.org/0000-0001-6739-5076</orcidid><orcidid>https://orcid.org/0000-0001-8986-104X</orcidid><orcidid>https://orcid.org/0000-0002-5354-4701</orcidid><orcidid>https://orcid.org/0000-0002-9621-8332</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10537-10544 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2891752448 |
source | American Chemical Society Journals |
title | Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnesium%20Mitigation%20Behavior%20in%20P2-Layered%20Sodium-Ion%20Battery%20Cathode&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wan,%20Hui&rft.date=2023-11-30&rft.volume=14&rft.issue=47&rft.spage=10537&rft.epage=10544&rft.pages=10537-10544&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02437&rft_dat=%3Cproquest_cross%3E2891752448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891752448&rft_id=info:pmid/&rfr_iscdi=true |