Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications

Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2024-05, Vol.112 (5), p.672-684
Hauptverfasser: Gaihre, Bipin, Potes, Maria D. Astudillo, Liu, Xifeng, Tilton, Maryam, Camilleri, Emily, Rezaei, Asghar, Serdiuk, Vitalii, Park, Sungjo, Lucien, Fabrice, Terzic, Andre, Lu, Lichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 5
container_start_page 672
container_title Journal of biomedical materials research. Part A
container_volume 112
creator Gaihre, Bipin
Potes, Maria D. Astudillo
Liu, Xifeng
Tilton, Maryam
Camilleri, Emily
Rezaei, Asghar
Serdiuk, Vitalii
Park, Sungjo
Lucien, Fabrice
Terzic, Andre
Lu, Lichun
description Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.
doi_str_mv 10.1002/jbm.a.37646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891749799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891749799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</originalsourceid><addsrcrecordid>eNp9kbtuFDEUhi2UiFygokcjpUkU7eK7x2XuCQqigdqyPXaY1aw92DNKNlUeIc_Ik-DJBAoKGp8jn8-_jv8fgA8ILhGE-NPKrJd6SQSn_A3YRYzhBZWcbU09lQuCJd8BezmvCswhw2_BDhFSICjoLggXD0MacxtDRc5_PT33qQ1DG-4qHZrK_tBJ28Gl9lEPExJ91cduc2h1n2JXRjG4yo_rgg3uqPIxVWa6Su7OBZfmR7rvu9a-9Pkd2Pa6y-79a90H3y8vvp1dL26_Xt2cndwuLOGQT6dpOEU187UhnFrBMROw0Q3UAnsmOPRGGoi4ZpwgzgQhntWM1t4ZbQ3ZB4ezbtnz5-jyoNZttq7rdHBxzArXEgkqhZQFPfgHXcUxhbKdKs7humYS0UIdz5RNMefkvCpOlX9vFIJqikGVGJRWLzEU-uOr5mjWrvnL_vG9AHgG7tvObf6npT6ffjmZVX8DePKU1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962885914</pqid></control><display><type>article</type><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</creator><creatorcontrib>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</creatorcontrib><description>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37646</identifier><identifier>PMID: 37971074</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; Animals ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone mineral density ; Bone Regeneration ; bone tissue engineering ; Bones ; Cancellous bone ; Cell adhesion ; Cell interactions ; Cell proliferation ; Chorioallantoic membrane ; Compressive properties ; Crosslinking ; Extrusion ; extrusion printing ; Fumarates - chemistry ; Fumarates - pharmacology ; Implantation ; Injection molding ; Membranes ; Mesenchymal stem cells ; Nutrient flow ; Osteogenesis ; Polycaprolactone ; polycaprolactone fumarate ; Polyesters - chemistry ; Polyesters - pharmacology ; Porosity ; Printing ; Printing, Three-Dimensional ; Rats ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Surgical implants ; Three dimensional flow ; Three dimensional printing ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2024-05, Vol.112 (5), p.672-684</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</citedby><cites>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</cites><orcidid>0009-0000-2596-7427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37646$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37646$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37971074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Potes, Maria D. Astudillo</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><creatorcontrib>Camilleri, Emily</creatorcontrib><creatorcontrib>Rezaei, Asghar</creatorcontrib><creatorcontrib>Serdiuk, Vitalii</creatorcontrib><creatorcontrib>Park, Sungjo</creatorcontrib><creatorcontrib>Lucien, Fabrice</creatorcontrib><creatorcontrib>Terzic, Andre</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</description><subject>3-D printers</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone mineral density</subject><subject>Bone Regeneration</subject><subject>bone tissue engineering</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>Cell adhesion</subject><subject>Cell interactions</subject><subject>Cell proliferation</subject><subject>Chorioallantoic membrane</subject><subject>Compressive properties</subject><subject>Crosslinking</subject><subject>Extrusion</subject><subject>extrusion printing</subject><subject>Fumarates - chemistry</subject><subject>Fumarates - pharmacology</subject><subject>Implantation</subject><subject>Injection molding</subject><subject>Membranes</subject><subject>Mesenchymal stem cells</subject><subject>Nutrient flow</subject><subject>Osteogenesis</subject><subject>Polycaprolactone</subject><subject>polycaprolactone fumarate</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Porosity</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Three dimensional flow</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kbtuFDEUhi2UiFygokcjpUkU7eK7x2XuCQqigdqyPXaY1aw92DNKNlUeIc_Ik-DJBAoKGp8jn8-_jv8fgA8ILhGE-NPKrJd6SQSn_A3YRYzhBZWcbU09lQuCJd8BezmvCswhw2_BDhFSICjoLggXD0MacxtDRc5_PT33qQ1DG-4qHZrK_tBJ28Gl9lEPExJ91cduc2h1n2JXRjG4yo_rgg3uqPIxVWa6Su7OBZfmR7rvu9a-9Pkd2Pa6y-79a90H3y8vvp1dL26_Xt2cndwuLOGQT6dpOEU187UhnFrBMROw0Q3UAnsmOPRGGoi4ZpwgzgQhntWM1t4ZbQ3ZB4ezbtnz5-jyoNZttq7rdHBxzArXEgkqhZQFPfgHXcUxhbKdKs7humYS0UIdz5RNMefkvCpOlX9vFIJqikGVGJRWLzEU-uOr5mjWrvnL_vG9AHgG7tvObf6npT6ffjmZVX8DePKU1A</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Gaihre, Bipin</creator><creator>Potes, Maria D. Astudillo</creator><creator>Liu, Xifeng</creator><creator>Tilton, Maryam</creator><creator>Camilleri, Emily</creator><creator>Rezaei, Asghar</creator><creator>Serdiuk, Vitalii</creator><creator>Park, Sungjo</creator><creator>Lucien, Fabrice</creator><creator>Terzic, Andre</creator><creator>Lu, Lichun</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-2596-7427</orcidid></search><sort><creationdate>202405</creationdate><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><author>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone mineral density</topic><topic>Bone Regeneration</topic><topic>bone tissue engineering</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>Cell adhesion</topic><topic>Cell interactions</topic><topic>Cell proliferation</topic><topic>Chorioallantoic membrane</topic><topic>Compressive properties</topic><topic>Crosslinking</topic><topic>Extrusion</topic><topic>extrusion printing</topic><topic>Fumarates - chemistry</topic><topic>Fumarates - pharmacology</topic><topic>Implantation</topic><topic>Injection molding</topic><topic>Membranes</topic><topic>Mesenchymal stem cells</topic><topic>Nutrient flow</topic><topic>Osteogenesis</topic><topic>Polycaprolactone</topic><topic>polycaprolactone fumarate</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Porosity</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Three dimensional flow</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Potes, Maria D. Astudillo</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><creatorcontrib>Camilleri, Emily</creatorcontrib><creatorcontrib>Rezaei, Asghar</creatorcontrib><creatorcontrib>Serdiuk, Vitalii</creatorcontrib><creatorcontrib>Park, Sungjo</creatorcontrib><creatorcontrib>Lucien, Fabrice</creatorcontrib><creatorcontrib>Terzic, Andre</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaihre, Bipin</au><au>Potes, Maria D. Astudillo</au><au>Liu, Xifeng</au><au>Tilton, Maryam</au><au>Camilleri, Emily</au><au>Rezaei, Asghar</au><au>Serdiuk, Vitalii</au><au>Park, Sungjo</au><au>Lucien, Fabrice</au><au>Terzic, Andre</au><au>Lu, Lichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2024-05</date><risdate>2024</risdate><volume>112</volume><issue>5</issue><spage>672</spage><epage>684</epage><pages>672-684</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37971074</pmid><doi>10.1002/jbm.a.37646</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-2596-7427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2024-05, Vol.112 (5), p.672-684
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_2891749799
source MEDLINE; Access via Wiley Online Library
subjects 3-D printers
Animals
Biocompatible Materials - chemistry
Biomaterials
Biomedical materials
Bone biomaterials
Bone growth
Bone mineral density
Bone Regeneration
bone tissue engineering
Bones
Cancellous bone
Cell adhesion
Cell interactions
Cell proliferation
Chorioallantoic membrane
Compressive properties
Crosslinking
Extrusion
extrusion printing
Fumarates - chemistry
Fumarates - pharmacology
Implantation
Injection molding
Membranes
Mesenchymal stem cells
Nutrient flow
Osteogenesis
Polycaprolactone
polycaprolactone fumarate
Polyesters - chemistry
Polyesters - pharmacology
Porosity
Printing
Printing, Three-Dimensional
Rats
Regeneration
Regeneration (physiology)
Scaffolds
Stem cells
Surgical implants
Three dimensional flow
Three dimensional printing
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extrusion%203D%E2%80%90printing%20and%20characterization%20of%20poly(caprolactone%20fumarate)%20for%20bone%20regeneration%20applications&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gaihre,%20Bipin&rft.date=2024-05&rft.volume=112&rft.issue=5&rft.spage=672&rft.epage=684&rft.pages=672-684&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37646&rft_dat=%3Cproquest_cross%3E2891749799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962885914&rft_id=info:pmid/37971074&rfr_iscdi=true