Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications
Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosi...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2024-05, Vol.112 (5), p.672-684 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 5 |
container_start_page | 672 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 112 |
creator | Gaihre, Bipin Potes, Maria D. Astudillo Liu, Xifeng Tilton, Maryam Camilleri, Emily Rezaei, Asghar Serdiuk, Vitalii Park, Sungjo Lucien, Fabrice Terzic, Andre Lu, Lichun |
description | Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications. |
doi_str_mv | 10.1002/jbm.a.37646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2891749799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891749799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</originalsourceid><addsrcrecordid>eNp9kbtuFDEUhi2UiFygokcjpUkU7eK7x2XuCQqigdqyPXaY1aw92DNKNlUeIc_Ik-DJBAoKGp8jn8-_jv8fgA8ILhGE-NPKrJd6SQSn_A3YRYzhBZWcbU09lQuCJd8BezmvCswhw2_BDhFSICjoLggXD0MacxtDRc5_PT33qQ1DG-4qHZrK_tBJ28Gl9lEPExJ91cduc2h1n2JXRjG4yo_rgg3uqPIxVWa6Su7OBZfmR7rvu9a-9Pkd2Pa6y-79a90H3y8vvp1dL26_Xt2cndwuLOGQT6dpOEU187UhnFrBMROw0Q3UAnsmOPRGGoi4ZpwgzgQhntWM1t4ZbQ3ZB4ezbtnz5-jyoNZttq7rdHBxzArXEgkqhZQFPfgHXcUxhbKdKs7humYS0UIdz5RNMefkvCpOlX9vFIJqikGVGJRWLzEU-uOr5mjWrvnL_vG9AHgG7tvObf6npT6ffjmZVX8DePKU1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2962885914</pqid></control><display><type>article</type><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</creator><creatorcontrib>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</creatorcontrib><description>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37646</identifier><identifier>PMID: 37971074</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3-D printers ; Animals ; Biocompatible Materials - chemistry ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone mineral density ; Bone Regeneration ; bone tissue engineering ; Bones ; Cancellous bone ; Cell adhesion ; Cell interactions ; Cell proliferation ; Chorioallantoic membrane ; Compressive properties ; Crosslinking ; Extrusion ; extrusion printing ; Fumarates - chemistry ; Fumarates - pharmacology ; Implantation ; Injection molding ; Membranes ; Mesenchymal stem cells ; Nutrient flow ; Osteogenesis ; Polycaprolactone ; polycaprolactone fumarate ; Polyesters - chemistry ; Polyesters - pharmacology ; Porosity ; Printing ; Printing, Three-Dimensional ; Rats ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Stem cells ; Surgical implants ; Three dimensional flow ; Three dimensional printing ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2024-05, Vol.112 (5), p.672-684</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</citedby><cites>FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</cites><orcidid>0009-0000-2596-7427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37646$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37646$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37971074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Potes, Maria D. Astudillo</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><creatorcontrib>Camilleri, Emily</creatorcontrib><creatorcontrib>Rezaei, Asghar</creatorcontrib><creatorcontrib>Serdiuk, Vitalii</creatorcontrib><creatorcontrib>Park, Sungjo</creatorcontrib><creatorcontrib>Lucien, Fabrice</creatorcontrib><creatorcontrib>Terzic, Andre</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</description><subject>3-D printers</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone mineral density</subject><subject>Bone Regeneration</subject><subject>bone tissue engineering</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>Cell adhesion</subject><subject>Cell interactions</subject><subject>Cell proliferation</subject><subject>Chorioallantoic membrane</subject><subject>Compressive properties</subject><subject>Crosslinking</subject><subject>Extrusion</subject><subject>extrusion printing</subject><subject>Fumarates - chemistry</subject><subject>Fumarates - pharmacology</subject><subject>Implantation</subject><subject>Injection molding</subject><subject>Membranes</subject><subject>Mesenchymal stem cells</subject><subject>Nutrient flow</subject><subject>Osteogenesis</subject><subject>Polycaprolactone</subject><subject>polycaprolactone fumarate</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Porosity</subject><subject>Printing</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Three dimensional flow</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kbtuFDEUhi2UiFygokcjpUkU7eK7x2XuCQqigdqyPXaY1aw92DNKNlUeIc_Ik-DJBAoKGp8jn8-_jv8fgA8ILhGE-NPKrJd6SQSn_A3YRYzhBZWcbU09lQuCJd8BezmvCswhw2_BDhFSICjoLggXD0MacxtDRc5_PT33qQ1DG-4qHZrK_tBJ28Gl9lEPExJ91cduc2h1n2JXRjG4yo_rgg3uqPIxVWa6Su7OBZfmR7rvu9a-9Pkd2Pa6y-79a90H3y8vvp1dL26_Xt2cndwuLOGQT6dpOEU187UhnFrBMROw0Q3UAnsmOPRGGoi4ZpwgzgQhntWM1t4ZbQ3ZB4ezbtnz5-jyoNZttq7rdHBxzArXEgkqhZQFPfgHXcUxhbKdKs7humYS0UIdz5RNMefkvCpOlX9vFIJqikGVGJRWLzEU-uOr5mjWrvnL_vG9AHgG7tvObf6npT6ffjmZVX8DePKU1A</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Gaihre, Bipin</creator><creator>Potes, Maria D. Astudillo</creator><creator>Liu, Xifeng</creator><creator>Tilton, Maryam</creator><creator>Camilleri, Emily</creator><creator>Rezaei, Asghar</creator><creator>Serdiuk, Vitalii</creator><creator>Park, Sungjo</creator><creator>Lucien, Fabrice</creator><creator>Terzic, Andre</creator><creator>Lu, Lichun</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-2596-7427</orcidid></search><sort><creationdate>202405</creationdate><title>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</title><author>Gaihre, Bipin ; Potes, Maria D. Astudillo ; Liu, Xifeng ; Tilton, Maryam ; Camilleri, Emily ; Rezaei, Asghar ; Serdiuk, Vitalii ; Park, Sungjo ; Lucien, Fabrice ; Terzic, Andre ; Lu, Lichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3606-c36bd64185f8b364c762570dad0a72f5760fb9b016a563165733f58548febacb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone mineral density</topic><topic>Bone Regeneration</topic><topic>bone tissue engineering</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>Cell adhesion</topic><topic>Cell interactions</topic><topic>Cell proliferation</topic><topic>Chorioallantoic membrane</topic><topic>Compressive properties</topic><topic>Crosslinking</topic><topic>Extrusion</topic><topic>extrusion printing</topic><topic>Fumarates - chemistry</topic><topic>Fumarates - pharmacology</topic><topic>Implantation</topic><topic>Injection molding</topic><topic>Membranes</topic><topic>Mesenchymal stem cells</topic><topic>Nutrient flow</topic><topic>Osteogenesis</topic><topic>Polycaprolactone</topic><topic>polycaprolactone fumarate</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Porosity</topic><topic>Printing</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Three dimensional flow</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Potes, Maria D. Astudillo</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><creatorcontrib>Camilleri, Emily</creatorcontrib><creatorcontrib>Rezaei, Asghar</creatorcontrib><creatorcontrib>Serdiuk, Vitalii</creatorcontrib><creatorcontrib>Park, Sungjo</creatorcontrib><creatorcontrib>Lucien, Fabrice</creatorcontrib><creatorcontrib>Terzic, Andre</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaihre, Bipin</au><au>Potes, Maria D. Astudillo</au><au>Liu, Xifeng</au><au>Tilton, Maryam</au><au>Camilleri, Emily</au><au>Rezaei, Asghar</au><au>Serdiuk, Vitalii</au><au>Park, Sungjo</au><au>Lucien, Fabrice</au><au>Terzic, Andre</au><au>Lu, Lichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2024-05</date><risdate>2024</risdate><volume>112</volume><issue>5</issue><spage>672</spage><epage>684</epage><pages>672-684</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Polycaprolactone fumarate (PCLF) is a cross‐linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell–cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro‐architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post‐processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D‐printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37971074</pmid><doi>10.1002/jbm.a.37646</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-2596-7427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2024-05, Vol.112 (5), p.672-684 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2891749799 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 3-D printers Animals Biocompatible Materials - chemistry Biomaterials Biomedical materials Bone biomaterials Bone growth Bone mineral density Bone Regeneration bone tissue engineering Bones Cancellous bone Cell adhesion Cell interactions Cell proliferation Chorioallantoic membrane Compressive properties Crosslinking Extrusion extrusion printing Fumarates - chemistry Fumarates - pharmacology Implantation Injection molding Membranes Mesenchymal stem cells Nutrient flow Osteogenesis Polycaprolactone polycaprolactone fumarate Polyesters - chemistry Polyesters - pharmacology Porosity Printing Printing, Three-Dimensional Rats Regeneration Regeneration (physiology) Scaffolds Stem cells Surgical implants Three dimensional flow Three dimensional printing Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extrusion%203D%E2%80%90printing%20and%20characterization%20of%20poly(caprolactone%20fumarate)%20for%20bone%20regeneration%20applications&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Gaihre,%20Bipin&rft.date=2024-05&rft.volume=112&rft.issue=5&rft.spage=672&rft.epage=684&rft.pages=672-684&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37646&rft_dat=%3Cproquest_cross%3E2891749799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2962885914&rft_id=info:pmid/37971074&rfr_iscdi=true |