Adaptive competitive self-organizing associative memory

This work presents the design of an adaptive competitive self-organizing associative memory (ACSAM) system for use in classification and recognition of pattern information. Volterra and Lotka's models of interacting species in biology motivated the ACSAM model; a model based on a system of nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2002-07, Vol.32 (4), p.461-471
Hauptverfasser: Athinarayanan, R., Sayeh, M.R., Wood, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 4
container_start_page 461
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 32
creator Athinarayanan, R.
Sayeh, M.R.
Wood, D.A.
description This work presents the design of an adaptive competitive self-organizing associative memory (ACSAM) system for use in classification and recognition of pattern information. Volterra and Lotka's models of interacting species in biology motivated the ACSAM model; a model based on a system of nonlinear ordinary differential equations (ODEs). Self-organizing behavior is modeled for unsupervised neural networks employing the concept of interacting/competing species in biology. In this model, self-organizing properties can be implicitly coded within the systems trajectory structure using only ODEs. Among the features of this continuous-time system are: 1) the dynamic behavior is well-understood and characterized; 2) the desired fixed points are the only asymptotically stable states of the system; 3) the trajectories of ACSAM derived from the weight activities of the gradient system have no periodic or homoclinic orbits; and 4) the heteroclinic orbits that exist between equilibrium states are structurally unstable and can be removed by small perturbations.
doi_str_mv 10.1109/TSMCA.2002.804789
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28913774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1158963</ieee_id><sourcerecordid>28202520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ced24b61b21d113bf382b069223e456cce979067ee51e93f806bc96ebe27bd3e3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_QLwUD3ramkySTXIsxS9QPFjPYTc7W7bsbmqyFeqvd9sVBA_iaV6YZwZmHkLOGZ0yRs3N4vV5PpsCpTDVVChtDsiISakTEJAe9plqnggB6picxLiilAlhxIioWZGtu-oDJ843a-yqfY5Yl4kPy6ytPqt2Ocli9K7K9r0GGx-2p-SozOqIZ991TN7ubhfzh-Tp5f5xPntKHNeiSxwWIPKU5cAKxnhecg05TQ0ARyFT59AoQ1OFKBkaXmqa5s6kmCOovODIx-R62LsO_n2DsbNNFR3Wddai30RrqDKSMwk9efUnCdowrpT4BwgUJNAevPwFrvwmtP25Vuv-fRKk7CE2QC74GAOWdh2qJgtby6jdqbF7NXanxg5q-pmLYaZCxB-eSW1Szr8Ae9SJeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884495255</pqid></control><display><type>article</type><title>Adaptive competitive self-organizing associative memory</title><source>IEEE Electronic Library (IEL)</source><creator>Athinarayanan, R. ; Sayeh, M.R. ; Wood, D.A.</creator><creatorcontrib>Athinarayanan, R. ; Sayeh, M.R. ; Wood, D.A.</creatorcontrib><description>This work presents the design of an adaptive competitive self-organizing associative memory (ACSAM) system for use in classification and recognition of pattern information. Volterra and Lotka's models of interacting species in biology motivated the ACSAM model; a model based on a system of nonlinear ordinary differential equations (ODEs). Self-organizing behavior is modeled for unsupervised neural networks employing the concept of interacting/competing species in biology. In this model, self-organizing properties can be implicitly coded within the systems trajectory structure using only ODEs. Among the features of this continuous-time system are: 1) the dynamic behavior is well-understood and characterized; 2) the desired fixed points are the only asymptotically stable states of the system; 3) the trajectories of ACSAM derived from the weight activities of the gradient system have no periodic or homoclinic orbits; and 4) the heteroclinic orbits that exist between equilibrium states are structurally unstable and can be removed by small perturbations.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2002.804789</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Associative memory ; Asymptotic properties ; Biological system modeling ; Biology ; Clustering algorithms ; Computational biology ; Differential equations ; Dynamical systems ; Dynamics ; Neural networks ; Neurons ; Nonlinear dynamics ; Orbits ; Ordinary differential equations ; Pattern recognition ; Prototypes ; Studies ; Trajectories</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2002-07, Vol.32 (4), p.461-471</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ced24b61b21d113bf382b069223e456cce979067ee51e93f806bc96ebe27bd3e3</citedby><cites>FETCH-LOGICAL-c384t-ced24b61b21d113bf382b069223e456cce979067ee51e93f806bc96ebe27bd3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1158963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1158963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Athinarayanan, R.</creatorcontrib><creatorcontrib>Sayeh, M.R.</creatorcontrib><creatorcontrib>Wood, D.A.</creatorcontrib><title>Adaptive competitive self-organizing associative memory</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>This work presents the design of an adaptive competitive self-organizing associative memory (ACSAM) system for use in classification and recognition of pattern information. Volterra and Lotka's models of interacting species in biology motivated the ACSAM model; a model based on a system of nonlinear ordinary differential equations (ODEs). Self-organizing behavior is modeled for unsupervised neural networks employing the concept of interacting/competing species in biology. In this model, self-organizing properties can be implicitly coded within the systems trajectory structure using only ODEs. Among the features of this continuous-time system are: 1) the dynamic behavior is well-understood and characterized; 2) the desired fixed points are the only asymptotically stable states of the system; 3) the trajectories of ACSAM derived from the weight activities of the gradient system have no periodic or homoclinic orbits; and 4) the heteroclinic orbits that exist between equilibrium states are structurally unstable and can be removed by small perturbations.</description><subject>Algorithms</subject><subject>Associative memory</subject><subject>Asymptotic properties</subject><subject>Biological system modeling</subject><subject>Biology</subject><subject>Clustering algorithms</subject><subject>Computational biology</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Nonlinear dynamics</subject><subject>Orbits</subject><subject>Ordinary differential equations</subject><subject>Pattern recognition</subject><subject>Prototypes</subject><subject>Studies</subject><subject>Trajectories</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_QLwUD3ramkySTXIsxS9QPFjPYTc7W7bsbmqyFeqvd9sVBA_iaV6YZwZmHkLOGZ0yRs3N4vV5PpsCpTDVVChtDsiISakTEJAe9plqnggB6picxLiilAlhxIioWZGtu-oDJ843a-yqfY5Yl4kPy6ytPqt2Ocli9K7K9r0GGx-2p-SozOqIZ991TN7ubhfzh-Tp5f5xPntKHNeiSxwWIPKU5cAKxnhecg05TQ0ARyFT59AoQ1OFKBkaXmqa5s6kmCOovODIx-R62LsO_n2DsbNNFR3Wddai30RrqDKSMwk9efUnCdowrpT4BwgUJNAevPwFrvwmtP25Vuv-fRKk7CE2QC74GAOWdh2qJgtby6jdqbF7NXanxg5q-pmLYaZCxB-eSW1Szr8Ae9SJeA</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Athinarayanan, R.</creator><creator>Sayeh, M.R.</creator><creator>Wood, D.A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20020701</creationdate><title>Adaptive competitive self-organizing associative memory</title><author>Athinarayanan, R. ; Sayeh, M.R. ; Wood, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ced24b61b21d113bf382b069223e456cce979067ee51e93f806bc96ebe27bd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Associative memory</topic><topic>Asymptotic properties</topic><topic>Biological system modeling</topic><topic>Biology</topic><topic>Clustering algorithms</topic><topic>Computational biology</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Nonlinear dynamics</topic><topic>Orbits</topic><topic>Ordinary differential equations</topic><topic>Pattern recognition</topic><topic>Prototypes</topic><topic>Studies</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athinarayanan, R.</creatorcontrib><creatorcontrib>Sayeh, M.R.</creatorcontrib><creatorcontrib>Wood, D.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Athinarayanan, R.</au><au>Sayeh, M.R.</au><au>Wood, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive competitive self-organizing associative memory</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2002-07-01</date><risdate>2002</risdate><volume>32</volume><issue>4</issue><spage>461</spage><epage>471</epage><pages>461-471</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>This work presents the design of an adaptive competitive self-organizing associative memory (ACSAM) system for use in classification and recognition of pattern information. Volterra and Lotka's models of interacting species in biology motivated the ACSAM model; a model based on a system of nonlinear ordinary differential equations (ODEs). Self-organizing behavior is modeled for unsupervised neural networks employing the concept of interacting/competing species in biology. In this model, self-organizing properties can be implicitly coded within the systems trajectory structure using only ODEs. Among the features of this continuous-time system are: 1) the dynamic behavior is well-understood and characterized; 2) the desired fixed points are the only asymptotically stable states of the system; 3) the trajectories of ACSAM derived from the weight activities of the gradient system have no periodic or homoclinic orbits; and 4) the heteroclinic orbits that exist between equilibrium states are structurally unstable and can be removed by small perturbations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2002.804789</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2002-07, Vol.32 (4), p.461-471
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_proquest_miscellaneous_28913774
source IEEE Electronic Library (IEL)
subjects Algorithms
Associative memory
Asymptotic properties
Biological system modeling
Biology
Clustering algorithms
Computational biology
Differential equations
Dynamical systems
Dynamics
Neural networks
Neurons
Nonlinear dynamics
Orbits
Ordinary differential equations
Pattern recognition
Prototypes
Studies
Trajectories
title Adaptive competitive self-organizing associative memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20competitive%20self-organizing%20associative%20memory&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=Athinarayanan,%20R.&rft.date=2002-07-01&rft.volume=32&rft.issue=4&rft.spage=461&rft.epage=471&rft.pages=461-471&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2002.804789&rft_dat=%3Cproquest_RIE%3E28202520%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884495255&rft_id=info:pmid/&rft_ieee_id=1158963&rfr_iscdi=true