Vapor pressure and voiding effects on thin film damage
Plastic encapsulated microcircuits exposed to a humid environment are susceptible to thin film adhesive failures during reflow soldering. Recent computational studies on thin film adhesive failures have adopted void-containing cell elements based on an extended Gurson continuum constitutive model. S...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2006-05, Vol.504 (1), p.325-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 1 |
container_start_page | 325 |
container_title | Thin solid films |
container_volume | 504 |
creator | Chew, H.B. Guo, T.F. Cheng, L. |
description | Plastic encapsulated microcircuits exposed to a humid environment are susceptible to thin film adhesive failures during reflow soldering. Recent computational studies on thin film adhesive failures have adopted void-containing cell elements based on an extended Gurson continuum constitutive model. Such an approach falls short of accurately replicating the ductile fracture process, particularly in cases where the film exhibits large elastic strains (e.g. polymeric materials). An alternative approach using discrete voids is capable of accurately resolving the growth and interactions of voids. In this work, thin film adhesive failures are studied using a model problem of a ductile adhesive joining two elastic substrates. The adhesive contains a centerline crack. Damage in the adhesive is confined to a single row of discrete voids ahead of the crack-tip. Under vapor pressure assisted voiding, large-scale adhesive damage is observed. Adhesive damage is further aggravated by the presence of large oblate voids. Our study offers some evidence of vapor pressure assisted void growth and coalescence as a key mechanism of popcorn cracking in IC packages. |
doi_str_mv | 10.1016/j.tsf.2005.09.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28913199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004060900501686X</els_id><sourcerecordid>28913199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7ebca2d12fa7ad672ef9cf69859e16063eaa3b577c2ef99db017f3cded5bc96e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNte9LbrJOkmGzxJ8QsKXtRryCaTmrJfJtuC_94tLXjzNId53neYh5BrCgUFKu42xZh8wQDKAlQB5eKEzGglVc4kp6dkBrCAXICCc3KR0gYAKGN8RsSnGfqYDRFT2kbMTOeyXR9c6NYZeo92TFnfZeNX6DIfmjZzpjVrvCRn3jQJr45zTj6eHt-XL_nq7fl1-bDKLS-rMZdYW8McZd5I44Rk6JX1QlWlQipAcDSG16WUdr9RrgYqPbcOXVlbJZDPye2hd4j99xbTqNuQLDaN6bDfJs0qRTlVagLpAbSxTymi10MMrYk_moLeG9IbPRnSe0MalJ4MTZmbY7lJ1jQ-ms6G9BeUQlFJ2cTdHzicPt0FjDrZgJ1FF-IkSLs-_HPlF2CFe9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28913199</pqid></control><display><type>article</type><title>Vapor pressure and voiding effects on thin film damage</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chew, H.B. ; Guo, T.F. ; Cheng, L.</creator><creatorcontrib>Chew, H.B. ; Guo, T.F. ; Cheng, L.</creatorcontrib><description>Plastic encapsulated microcircuits exposed to a humid environment are susceptible to thin film adhesive failures during reflow soldering. Recent computational studies on thin film adhesive failures have adopted void-containing cell elements based on an extended Gurson continuum constitutive model. Such an approach falls short of accurately replicating the ductile fracture process, particularly in cases where the film exhibits large elastic strains (e.g. polymeric materials). An alternative approach using discrete voids is capable of accurately resolving the growth and interactions of voids. In this work, thin film adhesive failures are studied using a model problem of a ductile adhesive joining two elastic substrates. The adhesive contains a centerline crack. Damage in the adhesive is confined to a single row of discrete voids ahead of the crack-tip. Under vapor pressure assisted voiding, large-scale adhesive damage is observed. Adhesive damage is further aggravated by the presence of large oblate voids. Our study offers some evidence of vapor pressure assisted void growth and coalescence as a key mechanism of popcorn cracking in IC packages.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2005.09.054</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Discrete voids ; Exact sciences and technology ; Fractures ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microscopic defects (voids, inclusions, etc.) ; Physics ; Structure of solids and liquids; crystallography ; Thin film ; Vapor pressure ; Void shape</subject><ispartof>Thin solid films, 2006-05, Vol.504 (1), p.325-330</ispartof><rights>2005 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7ebca2d12fa7ad672ef9cf69859e16063eaa3b577c2ef99db017f3cded5bc96e3</citedby><cites>FETCH-LOGICAL-c358t-7ebca2d12fa7ad672ef9cf69859e16063eaa3b577c2ef99db017f3cded5bc96e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2005.09.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,3539,23917,23918,25127,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17691712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chew, H.B.</creatorcontrib><creatorcontrib>Guo, T.F.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><title>Vapor pressure and voiding effects on thin film damage</title><title>Thin solid films</title><description>Plastic encapsulated microcircuits exposed to a humid environment are susceptible to thin film adhesive failures during reflow soldering. Recent computational studies on thin film adhesive failures have adopted void-containing cell elements based on an extended Gurson continuum constitutive model. Such an approach falls short of accurately replicating the ductile fracture process, particularly in cases where the film exhibits large elastic strains (e.g. polymeric materials). An alternative approach using discrete voids is capable of accurately resolving the growth and interactions of voids. In this work, thin film adhesive failures are studied using a model problem of a ductile adhesive joining two elastic substrates. The adhesive contains a centerline crack. Damage in the adhesive is confined to a single row of discrete voids ahead of the crack-tip. Under vapor pressure assisted voiding, large-scale adhesive damage is observed. Adhesive damage is further aggravated by the presence of large oblate voids. Our study offers some evidence of vapor pressure assisted void growth and coalescence as a key mechanism of popcorn cracking in IC packages.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Discrete voids</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microscopic defects (voids, inclusions, etc.)</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Thin film</subject><subject>Vapor pressure</subject><subject>Void shape</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNte9LbrJOkmGzxJ8QsKXtRryCaTmrJfJtuC_94tLXjzNId53neYh5BrCgUFKu42xZh8wQDKAlQB5eKEzGglVc4kp6dkBrCAXICCc3KR0gYAKGN8RsSnGfqYDRFT2kbMTOeyXR9c6NYZeo92TFnfZeNX6DIfmjZzpjVrvCRn3jQJr45zTj6eHt-XL_nq7fl1-bDKLS-rMZdYW8McZd5I44Rk6JX1QlWlQipAcDSG16WUdr9RrgYqPbcOXVlbJZDPye2hd4j99xbTqNuQLDaN6bDfJs0qRTlVagLpAbSxTymi10MMrYk_moLeG9IbPRnSe0MalJ4MTZmbY7lJ1jQ-ms6G9BeUQlFJ2cTdHzicPt0FjDrZgJ1FF-IkSLs-_HPlF2CFe9Q</recordid><startdate>20060510</startdate><enddate>20060510</enddate><creator>Chew, H.B.</creator><creator>Guo, T.F.</creator><creator>Cheng, L.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060510</creationdate><title>Vapor pressure and voiding effects on thin film damage</title><author>Chew, H.B. ; Guo, T.F. ; Cheng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7ebca2d12fa7ad672ef9cf69859e16063eaa3b577c2ef99db017f3cded5bc96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Discrete voids</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microscopic defects (voids, inclusions, etc.)</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Thin film</topic><topic>Vapor pressure</topic><topic>Void shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chew, H.B.</creatorcontrib><creatorcontrib>Guo, T.F.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chew, H.B.</au><au>Guo, T.F.</au><au>Cheng, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vapor pressure and voiding effects on thin film damage</atitle><jtitle>Thin solid films</jtitle><date>2006-05-10</date><risdate>2006</risdate><volume>504</volume><issue>1</issue><spage>325</spage><epage>330</epage><pages>325-330</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>Plastic encapsulated microcircuits exposed to a humid environment are susceptible to thin film adhesive failures during reflow soldering. Recent computational studies on thin film adhesive failures have adopted void-containing cell elements based on an extended Gurson continuum constitutive model. Such an approach falls short of accurately replicating the ductile fracture process, particularly in cases where the film exhibits large elastic strains (e.g. polymeric materials). An alternative approach using discrete voids is capable of accurately resolving the growth and interactions of voids. In this work, thin film adhesive failures are studied using a model problem of a ductile adhesive joining two elastic substrates. The adhesive contains a centerline crack. Damage in the adhesive is confined to a single row of discrete voids ahead of the crack-tip. Under vapor pressure assisted voiding, large-scale adhesive damage is observed. Adhesive damage is further aggravated by the presence of large oblate voids. Our study offers some evidence of vapor pressure assisted void growth and coalescence as a key mechanism of popcorn cracking in IC packages.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2005.09.054</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2006-05, Vol.504 (1), p.325-330 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_28913199 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Defects and impurities in crystals microstructure Discrete voids Exact sciences and technology Fractures Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microscopic defects (voids, inclusions, etc.) Physics Structure of solids and liquids crystallography Thin film Vapor pressure Void shape |
title | Vapor pressure and voiding effects on thin film damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vapor%20pressure%20and%20voiding%20effects%20on%20thin%20film%20damage&rft.jtitle=Thin%20solid%20films&rft.au=Chew,%20H.B.&rft.date=2006-05-10&rft.volume=504&rft.issue=1&rft.spage=325&rft.epage=330&rft.pages=325-330&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2005.09.054&rft_dat=%3Cproquest_cross%3E28913199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28913199&rft_id=info:pmid/&rft_els_id=S004060900501686X&rfr_iscdi=true |