Electromagnetic torques in the core and resonant excitation of decadal polar motion

SUMMARY Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core–mantle system termed torsional oscillations are known to affect the length of day...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2005-02, Vol.160 (2), p.721-728
1. Verfasser: Mound, Jon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 2
container_start_page 721
container_title Geophysical journal international
container_volume 160
creator Mound, Jon E.
description SUMMARY Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core–mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner‐core boundary (ICB) and core–mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30‐yr‐period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.
doi_str_mv 10.1111/j.1365-246X.2004.02495.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28911093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28532739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4255-620cab38b38036c314ca95a126304221cd69346489e42c513fd54f0910b52d0c3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_ISdvu04-3Rw8SKm1UvCgQm8hzWZ1y-6mJim2_767Vjx3GJhh5n2H4UEIE8hJH3frnDApMsrlMqcAPAfKlch3Z2j0vzhHI1BCZoLD8hJdxbgGIJzwYoTepo2zKfjWfHYu1RYnH763LuK6w-nLYeuDw6YrcXDRd6ZL2O1snUyqfYd9hUtnTWkavPGNCbj1w_waXVSmie7mr47Rx9P0ffKcLV5n88njIrOcCpFJCtasWNEnMGkZ4dYoYQiVDDilxJZSMS55oRynVhBWlYJXoAisBC3BsjG6Pd7dBD_8nHRbR-uaxnTOb6OmhSIEFDtBKBi9Z6oXFkehDT7G4Cq9CXVrwl4T0ANuvdYDVT1Q1QNu_Ytb73rrw9H6Uzduf7JPz17mQ8cO-aWF6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28532739</pqid></control><display><type>article</type><title>Electromagnetic torques in the core and resonant excitation of decadal polar motion</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library All Journals</source><creator>Mound, Jon E.</creator><creatorcontrib>Mound, Jon E.</creatorcontrib><description>SUMMARY Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core–mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner‐core boundary (ICB) and core–mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30‐yr‐period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1111/j.1365-246X.2004.02495.x</identifier><language>eng</language><publisher>23 Ainslie Place , Edinburgh EH3 6AJ , UK . Telephone 226 7232 Fax 226 3803: Blackwell Science Ltd</publisher><subject>core dynamics ; Earth rotation ; Markowitz wobble ; torsional oscillations</subject><ispartof>Geophysical journal international, 2005-02, Vol.160 (2), p.721-728</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4255-620cab38b38036c314ca95a126304221cd69346489e42c513fd54f0910b52d0c3</citedby><cites>FETCH-LOGICAL-c4255-620cab38b38036c314ca95a126304221cd69346489e42c513fd54f0910b52d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-246X.2004.02495.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-246X.2004.02495.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mound, Jon E.</creatorcontrib><title>Electromagnetic torques in the core and resonant excitation of decadal polar motion</title><title>Geophysical journal international</title><description>SUMMARY Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core–mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner‐core boundary (ICB) and core–mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30‐yr‐period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.</description><subject>core dynamics</subject><subject>Earth rotation</subject><subject>Markowitz wobble</subject><subject>torsional oscillations</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_ISdvu04-3Rw8SKm1UvCgQm8hzWZ1y-6mJim2_767Vjx3GJhh5n2H4UEIE8hJH3frnDApMsrlMqcAPAfKlch3Z2j0vzhHI1BCZoLD8hJdxbgGIJzwYoTepo2zKfjWfHYu1RYnH763LuK6w-nLYeuDw6YrcXDRd6ZL2O1snUyqfYd9hUtnTWkavPGNCbj1w_waXVSmie7mr47Rx9P0ffKcLV5n88njIrOcCpFJCtasWNEnMGkZ4dYoYQiVDDilxJZSMS55oRynVhBWlYJXoAisBC3BsjG6Pd7dBD_8nHRbR-uaxnTOb6OmhSIEFDtBKBi9Z6oXFkehDT7G4Cq9CXVrwl4T0ANuvdYDVT1Q1QNu_Ytb73rrw9H6Uzduf7JPz17mQ8cO-aWF6Q</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Mound, Jon E.</creator><general>Blackwell Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>200502</creationdate><title>Electromagnetic torques in the core and resonant excitation of decadal polar motion</title><author>Mound, Jon E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4255-620cab38b38036c314ca95a126304221cd69346489e42c513fd54f0910b52d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>core dynamics</topic><topic>Earth rotation</topic><topic>Markowitz wobble</topic><topic>torsional oscillations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mound, Jon E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mound, Jon E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic torques in the core and resonant excitation of decadal polar motion</atitle><jtitle>Geophysical journal international</jtitle><date>2005-02</date><risdate>2005</risdate><volume>160</volume><issue>2</issue><spage>721</spage><epage>728</epage><pages>721-728</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core–mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner‐core boundary (ICB) and core–mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30‐yr‐period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.</abstract><cop>23 Ainslie Place , Edinburgh EH3 6AJ , UK . Telephone 226 7232 Fax 226 3803</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-246X.2004.02495.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2005-02, Vol.160 (2), p.721-728
issn 0956-540X
1365-246X
language eng
recordid cdi_proquest_miscellaneous_28911093
source Oxford Journals Open Access Collection; Wiley Online Library All Journals
subjects core dynamics
Earth rotation
Markowitz wobble
torsional oscillations
title Electromagnetic torques in the core and resonant excitation of decadal polar motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20torques%20in%20the%20core%20and%20resonant%20excitation%20of%20decadal%20polar%20motion&rft.jtitle=Geophysical%20journal%20international&rft.au=Mound,%20Jon%20E.&rft.date=2005-02&rft.volume=160&rft.issue=2&rft.spage=721&rft.epage=728&rft.pages=721-728&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1111/j.1365-246X.2004.02495.x&rft_dat=%3Cproquest_cross%3E28532739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28532739&rft_id=info:pmid/&rfr_iscdi=true