Nanomedicine Combats Drug Resistance in Lung Cancer

Lung cancer is the second most prevalent cancer and the leading cause of cancer‐related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-01, Vol.36 (3), p.e2308977-n/a
Hauptverfasser: Zheng, Xiuli, Song, Xiaohai, Zhu, Guonian, Pan, Dayi, Li, Haonan, Hu, Jiankun, Xiao, Kai, Gong, Qiyong, Gu, Zhongwei, Luo, Kui, Li, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2308977
container_title Advanced materials (Weinheim)
container_volume 36
creator Zheng, Xiuli
Song, Xiaohai
Zhu, Guonian
Pan, Dayi
Li, Haonan
Hu, Jiankun
Xiao, Kai
Gong, Qiyong
Gu, Zhongwei
Luo, Kui
Li, Weimin
description Lung cancer is the second most prevalent cancer and the leading cause of cancer‐related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer. In this review, the discovered drug resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are introduced. Recent advances of organic, inorganic, and bio‐derived nanomedicines for drug‐resistant lung cancer treatment are summarized. The engineering design, customized delivery, current challenges, and clinical translation of nanomedicine for lung cancer are discussed.
doi_str_mv 10.1002/adma.202308977
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890755376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890755376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-e483669a8837e7804f57e1c8d019dcd38cd348eab84a3fa74e30795901f8f8ea3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHmXBi5etk80mmRzL1i-oCqLnkO5my5b9qEkX6b83pbWCFw_DMMMzL8NDyCWFMQVIbk3RmHECCQNUUh6RIeUJjVNQ_JgMQTEeK5HigJx5vwQAJUCckgGTSiAKPiTsxbRdY4sqr1obZV0zN2sfTV2_iN6sr_zatLmNqjaa9e0iyraTOycnpam9vdj3Efm4v3vPHuPZ68NTNpnFOZNMxjZFJoQyiExaiZCWXFqaYwFUFXnBMFSK1swxNaw0MrUMpOIKaIll2LMRudnlrlz32Vu_1k3lc1vXprVd73WCCiTnTIqAXv9Bl13v2vCdThTlyLniNFDjHZW7zntnS71yVWPcRlPQW516q1MfdIaDq31sPw-SDviPvwCoHfBV1XbzT5yeTJ8nv-HfuHh-7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915855951</pqid></control><display><type>article</type><title>Nanomedicine Combats Drug Resistance in Lung Cancer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Xiuli ; Song, Xiaohai ; Zhu, Guonian ; Pan, Dayi ; Li, Haonan ; Hu, Jiankun ; Xiao, Kai ; Gong, Qiyong ; Gu, Zhongwei ; Luo, Kui ; Li, Weimin</creator><creatorcontrib>Zheng, Xiuli ; Song, Xiaohai ; Zhu, Guonian ; Pan, Dayi ; Li, Haonan ; Hu, Jiankun ; Xiao, Kai ; Gong, Qiyong ; Gu, Zhongwei ; Luo, Kui ; Li, Weimin</creatorcontrib><description>Lung cancer is the second most prevalent cancer and the leading cause of cancer‐related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer. In this review, the discovered drug resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are introduced. Recent advances of organic, inorganic, and bio‐derived nanomedicines for drug‐resistant lung cancer treatment are summarized. The engineering design, customized delivery, current challenges, and clinical translation of nanomedicine for lung cancer are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202308977</identifier><identifier>PMID: 37968865</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antineoplastic Agents - pharmacology ; Cancer therapies ; Chemotherapy ; Design engineering ; Drug Delivery Systems ; Drug resistance ; Drug Resistance, Neoplasm ; Humans ; Immunotherapy ; Lung cancer ; Lung Neoplasms - drug therapy ; molecular targeted therapy ; Nanomedicine ; Neoplasms - drug therapy ; Physiochemistry ; Radiation therapy ; radiotherapy</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (3), p.e2308977-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-e483669a8837e7804f57e1c8d019dcd38cd348eab84a3fa74e30795901f8f8ea3</citedby><cites>FETCH-LOGICAL-c3737-e483669a8837e7804f57e1c8d019dcd38cd348eab84a3fa74e30795901f8f8ea3</cites><orcidid>0000-0003-0985-0311 ; 0000-0002-5912-4871 ; 0000-0001-6986-5772 ; 0000-0003-1547-6880 ; 0000-0001-7671-2395 ; 0000-0002-3536-1485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202308977$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202308977$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37968865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiuli</creatorcontrib><creatorcontrib>Song, Xiaohai</creatorcontrib><creatorcontrib>Zhu, Guonian</creatorcontrib><creatorcontrib>Pan, Dayi</creatorcontrib><creatorcontrib>Li, Haonan</creatorcontrib><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><creatorcontrib>Luo, Kui</creatorcontrib><creatorcontrib>Li, Weimin</creatorcontrib><title>Nanomedicine Combats Drug Resistance in Lung Cancer</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Lung cancer is the second most prevalent cancer and the leading cause of cancer‐related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer. In this review, the discovered drug resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are introduced. Recent advances of organic, inorganic, and bio‐derived nanomedicines for drug‐resistant lung cancer treatment are summarized. The engineering design, customized delivery, current challenges, and clinical translation of nanomedicine for lung cancer are discussed.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Design engineering</subject><subject>Drug Delivery Systems</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>molecular targeted therapy</subject><subject>Nanomedicine</subject><subject>Neoplasms - drug therapy</subject><subject>Physiochemistry</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlavHmXBi5etk80mmRzL1i-oCqLnkO5my5b9qEkX6b83pbWCFw_DMMMzL8NDyCWFMQVIbk3RmHECCQNUUh6RIeUJjVNQ_JgMQTEeK5HigJx5vwQAJUCckgGTSiAKPiTsxbRdY4sqr1obZV0zN2sfTV2_iN6sr_zatLmNqjaa9e0iyraTOycnpam9vdj3Efm4v3vPHuPZ68NTNpnFOZNMxjZFJoQyiExaiZCWXFqaYwFUFXnBMFSK1swxNaw0MrUMpOIKaIll2LMRudnlrlz32Vu_1k3lc1vXprVd73WCCiTnTIqAXv9Bl13v2vCdThTlyLniNFDjHZW7zntnS71yVWPcRlPQW516q1MfdIaDq31sPw-SDviPvwCoHfBV1XbzT5yeTJ8nv-HfuHh-7w</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zheng, Xiuli</creator><creator>Song, Xiaohai</creator><creator>Zhu, Guonian</creator><creator>Pan, Dayi</creator><creator>Li, Haonan</creator><creator>Hu, Jiankun</creator><creator>Xiao, Kai</creator><creator>Gong, Qiyong</creator><creator>Gu, Zhongwei</creator><creator>Luo, Kui</creator><creator>Li, Weimin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-0311</orcidid><orcidid>https://orcid.org/0000-0002-5912-4871</orcidid><orcidid>https://orcid.org/0000-0001-6986-5772</orcidid><orcidid>https://orcid.org/0000-0003-1547-6880</orcidid><orcidid>https://orcid.org/0000-0001-7671-2395</orcidid><orcidid>https://orcid.org/0000-0002-3536-1485</orcidid></search><sort><creationdate>20240101</creationdate><title>Nanomedicine Combats Drug Resistance in Lung Cancer</title><author>Zheng, Xiuli ; Song, Xiaohai ; Zhu, Guonian ; Pan, Dayi ; Li, Haonan ; Hu, Jiankun ; Xiao, Kai ; Gong, Qiyong ; Gu, Zhongwei ; Luo, Kui ; Li, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-e483669a8837e7804f57e1c8d019dcd38cd348eab84a3fa74e30795901f8f8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Design engineering</topic><topic>Drug Delivery Systems</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>molecular targeted therapy</topic><topic>Nanomedicine</topic><topic>Neoplasms - drug therapy</topic><topic>Physiochemistry</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiuli</creatorcontrib><creatorcontrib>Song, Xiaohai</creatorcontrib><creatorcontrib>Zhu, Guonian</creatorcontrib><creatorcontrib>Pan, Dayi</creatorcontrib><creatorcontrib>Li, Haonan</creatorcontrib><creatorcontrib>Hu, Jiankun</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><creatorcontrib>Gong, Qiyong</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><creatorcontrib>Luo, Kui</creatorcontrib><creatorcontrib>Li, Weimin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiuli</au><au>Song, Xiaohai</au><au>Zhu, Guonian</au><au>Pan, Dayi</au><au>Li, Haonan</au><au>Hu, Jiankun</au><au>Xiao, Kai</au><au>Gong, Qiyong</au><au>Gu, Zhongwei</au><au>Luo, Kui</au><au>Li, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomedicine Combats Drug Resistance in Lung Cancer</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><spage>e2308977</spage><epage>n/a</epage><pages>e2308977-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Lung cancer is the second most prevalent cancer and the leading cause of cancer‐related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer. In this review, the discovered drug resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are introduced. Recent advances of organic, inorganic, and bio‐derived nanomedicines for drug‐resistant lung cancer treatment are summarized. The engineering design, customized delivery, current challenges, and clinical translation of nanomedicine for lung cancer are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37968865</pmid><doi>10.1002/adma.202308977</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0003-0985-0311</orcidid><orcidid>https://orcid.org/0000-0002-5912-4871</orcidid><orcidid>https://orcid.org/0000-0001-6986-5772</orcidid><orcidid>https://orcid.org/0000-0003-1547-6880</orcidid><orcidid>https://orcid.org/0000-0001-7671-2395</orcidid><orcidid>https://orcid.org/0000-0002-3536-1485</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (3), p.e2308977-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2890755376
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antineoplastic Agents - pharmacology
Cancer therapies
Chemotherapy
Design engineering
Drug Delivery Systems
Drug resistance
Drug Resistance, Neoplasm
Humans
Immunotherapy
Lung cancer
Lung Neoplasms - drug therapy
molecular targeted therapy
Nanomedicine
Neoplasms - drug therapy
Physiochemistry
Radiation therapy
radiotherapy
title Nanomedicine Combats Drug Resistance in Lung Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomedicine%20Combats%20Drug%20Resistance%20in%20Lung%20Cancer&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zheng,%20Xiuli&rft.date=2024-01-01&rft.volume=36&rft.issue=3&rft.spage=e2308977&rft.epage=n/a&rft.pages=e2308977-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202308977&rft_dat=%3Cproquest_cross%3E2890755376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915855951&rft_id=info:pmid/37968865&rfr_iscdi=true