Kinetic magnetism in triangular moiré materials
Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed th...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2023-11, Vol.623 (7987), p.509-513 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 7987 |
container_start_page | 509 |
container_title | Nature (London) |
container_volume | 623 |
creator | Ciorciaro, L. Smoleński, T. Morera, I. Kiper, N. Hiestand, S. Kroner, M. Zhang, Y. Watanabe, K. Taniguchi, T. Demler, E. İmamoğlu, A. |
description | Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically
1
–
7
, but an experimental demonstration
8
in an extended system has been missing. Here we investigate MoSe
2
/WS
2
van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance
9
,
10
, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.
Minimization of kinetic energy leads to ferromagnetic correlations between itinerant electrons in MoSe
2
/WS
2
moiré lattices even in the absence of exchange interactions. |
doi_str_mv | 10.1038/s41586-023-06633-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890755077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112385437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ee2d593fbb11c7961b9983968ffce0392f4a7af62229f2e33ee6def2eae365503</originalsourceid><addsrcrecordid>eNp9kMtKxEAQRRtRcBz9AVcBN26i1V1JP5Yy-MIBN7puejLVQ4Y8xu7Mwk_yO_wxO0YQXLipKqrOvRSXsXMOVxxQX8eCl1rmIDAHKTHVAzbjhZJ5IbU6ZDMAoXPQKI_ZSYxbACi5KmYMnuqOhrrKWrcZh9hmdZcNoXbdZt-4kLV9HT4_0nmgtGziKTvyqdHZT5-z17vbl8VDvny-f1zcLPMKjRxyIrEuDfrVivNKGclXxuh00d5XBGiEL5xyXgohjBeESCTXlCZHKMsScM4uJ99d6N_2FAfb1rGipnEd9ftohTagEqhUQi_-oNt-H7r0nUXOBeqywJESE1WFPsZA3u5C3brwbjnYMUQ7hWhTiPY7RDt-gZMoJrjbUPi1_kf1BULkdEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112385437</pqid></control><display><type>article</type><title>Kinetic magnetism in triangular moiré materials</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Ciorciaro, L. ; Smoleński, T. ; Morera, I. ; Kiper, N. ; Hiestand, S. ; Kroner, M. ; Zhang, Y. ; Watanabe, K. ; Taniguchi, T. ; Demler, E. ; İmamoğlu, A.</creator><creatorcontrib>Ciorciaro, L. ; Smoleński, T. ; Morera, I. ; Kiper, N. ; Hiestand, S. ; Kroner, M. ; Zhang, Y. ; Watanabe, K. ; Taniguchi, T. ; Demler, E. ; İmamoğlu, A.</creatorcontrib><description>Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically
1
–
7
, but an experimental demonstration
8
in an extended system has been missing. Here we investigate MoSe
2
/WS
2
van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance
9
,
10
, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.
Minimization of kinetic energy leads to ferromagnetic correlations between itinerant electrons in MoSe
2
/WS
2
moiré lattices even in the absence of exchange interactions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06633-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119/1000/1018 ; 639/766/119/997 ; Correlation ; Cuprates ; Electrons ; Ferromagnetic materials ; Graphene ; Heterostructures ; Humanities and Social Sciences ; Investigations ; Magnetic fields ; Magnetic properties ; Magnetism ; Material properties ; Metals ; multidisciplinary ; Physics ; Science ; Science (multidisciplinary) ; Temperature</subject><ispartof>Nature (London), 2023-11, Vol.623 (7987), p.509-513</ispartof><rights>The Author(s) 2023</rights><rights>Copyright Nature Publishing Group Nov 16, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ee2d593fbb11c7961b9983968ffce0392f4a7af62229f2e33ee6def2eae365503</citedby><cites>FETCH-LOGICAL-c396t-ee2d593fbb11c7961b9983968ffce0392f4a7af62229f2e33ee6def2eae365503</cites><orcidid>0000-0001-7750-6411 ; 0000-0003-4630-5056 ; 0000-0001-7580-6568 ; 0000-0002-1467-3105 ; 0000-0002-4706-7777 ; 0000-0002-0641-1631 ; 0000-0003-3701-8119 ; 0000-0003-1504-0999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Ciorciaro, L.</creatorcontrib><creatorcontrib>Smoleński, T.</creatorcontrib><creatorcontrib>Morera, I.</creatorcontrib><creatorcontrib>Kiper, N.</creatorcontrib><creatorcontrib>Hiestand, S.</creatorcontrib><creatorcontrib>Kroner, M.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Demler, E.</creatorcontrib><creatorcontrib>İmamoğlu, A.</creatorcontrib><title>Kinetic magnetism in triangular moiré materials</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically
1
–
7
, but an experimental demonstration
8
in an extended system has been missing. Here we investigate MoSe
2
/WS
2
van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance
9
,
10
, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.
Minimization of kinetic energy leads to ferromagnetic correlations between itinerant electrons in MoSe
2
/WS
2
moiré lattices even in the absence of exchange interactions.</description><subject>140/125</subject><subject>639/766/119/1000/1018</subject><subject>639/766/119/997</subject><subject>Correlation</subject><subject>Cuprates</subject><subject>Electrons</subject><subject>Ferromagnetic materials</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Material properties</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxEAQRRtRcBz9AVcBN26i1V1JP5Yy-MIBN7puejLVQ4Y8xu7Mwk_yO_wxO0YQXLipKqrOvRSXsXMOVxxQX8eCl1rmIDAHKTHVAzbjhZJ5IbU6ZDMAoXPQKI_ZSYxbACi5KmYMnuqOhrrKWrcZh9hmdZcNoXbdZt-4kLV9HT4_0nmgtGziKTvyqdHZT5-z17vbl8VDvny-f1zcLPMKjRxyIrEuDfrVivNKGclXxuh00d5XBGiEL5xyXgohjBeESCTXlCZHKMsScM4uJ99d6N_2FAfb1rGipnEd9ftohTagEqhUQi_-oNt-H7r0nUXOBeqywJESE1WFPsZA3u5C3brwbjnYMUQ7hWhTiPY7RDt-gZMoJrjbUPi1_kf1BULkdEU</recordid><startdate>20231116</startdate><enddate>20231116</enddate><creator>Ciorciaro, L.</creator><creator>Smoleński, T.</creator><creator>Morera, I.</creator><creator>Kiper, N.</creator><creator>Hiestand, S.</creator><creator>Kroner, M.</creator><creator>Zhang, Y.</creator><creator>Watanabe, K.</creator><creator>Taniguchi, T.</creator><creator>Demler, E.</creator><creator>İmamoğlu, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7750-6411</orcidid><orcidid>https://orcid.org/0000-0003-4630-5056</orcidid><orcidid>https://orcid.org/0000-0001-7580-6568</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-4706-7777</orcidid><orcidid>https://orcid.org/0000-0002-0641-1631</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid></search><sort><creationdate>20231116</creationdate><title>Kinetic magnetism in triangular moiré materials</title><author>Ciorciaro, L. ; Smoleński, T. ; Morera, I. ; Kiper, N. ; Hiestand, S. ; Kroner, M. ; Zhang, Y. ; Watanabe, K. ; Taniguchi, T. ; Demler, E. ; İmamoğlu, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ee2d593fbb11c7961b9983968ffce0392f4a7af62229f2e33ee6def2eae365503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>639/766/119/1000/1018</topic><topic>639/766/119/997</topic><topic>Correlation</topic><topic>Cuprates</topic><topic>Electrons</topic><topic>Ferromagnetic materials</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Material properties</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciorciaro, L.</creatorcontrib><creatorcontrib>Smoleński, T.</creatorcontrib><creatorcontrib>Morera, I.</creatorcontrib><creatorcontrib>Kiper, N.</creatorcontrib><creatorcontrib>Hiestand, S.</creatorcontrib><creatorcontrib>Kroner, M.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Demler, E.</creatorcontrib><creatorcontrib>İmamoğlu, A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciorciaro, L.</au><au>Smoleński, T.</au><au>Morera, I.</au><au>Kiper, N.</au><au>Hiestand, S.</au><au>Kroner, M.</au><au>Zhang, Y.</au><au>Watanabe, K.</au><au>Taniguchi, T.</au><au>Demler, E.</au><au>İmamoğlu, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic magnetism in triangular moiré materials</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2023-11-16</date><risdate>2023</risdate><volume>623</volume><issue>7987</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically
1
–
7
, but an experimental demonstration
8
in an extended system has been missing. Here we investigate MoSe
2
/WS
2
van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance
9
,
10
, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.
Minimization of kinetic energy leads to ferromagnetic correlations between itinerant electrons in MoSe
2
/WS
2
moiré lattices even in the absence of exchange interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-023-06633-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7750-6411</orcidid><orcidid>https://orcid.org/0000-0003-4630-5056</orcidid><orcidid>https://orcid.org/0000-0001-7580-6568</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-4706-7777</orcidid><orcidid>https://orcid.org/0000-0002-0641-1631</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-1504-0999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-11, Vol.623 (7987), p.509-513 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2890755077 |
source | Nature; Alma/SFX Local Collection |
subjects | 140/125 639/766/119/1000/1018 639/766/119/997 Correlation Cuprates Electrons Ferromagnetic materials Graphene Heterostructures Humanities and Social Sciences Investigations Magnetic fields Magnetic properties Magnetism Material properties Metals multidisciplinary Physics Science Science (multidisciplinary) Temperature |
title | Kinetic magnetism in triangular moiré materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20magnetism%20in%20triangular%20moir%C3%A9%20materials&rft.jtitle=Nature%20(London)&rft.au=Ciorciaro,%20L.&rft.date=2023-11-16&rft.volume=623&rft.issue=7987&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06633-0&rft_dat=%3Cproquest_cross%3E3112385437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112385437&rft_id=info:pmid/&rfr_iscdi=true |