Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification

A hydrometeor classification system based on a fuzzy logic technique using dual-polarization radar measurements of precipitation is presented. In this study, five dual-polarization radar measurements (namely horizontal reflectivity, differential reflectivity, specific differential phase, correlation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2005-04, Vol.43 (4), p.792-801
Hauptverfasser: Lim, S., Chandrasekar, V., Bringi, V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 4
container_start_page 792
container_title IEEE transactions on geoscience and remote sensing
container_volume 43
creator Lim, S.
Chandrasekar, V.
Bringi, V.N.
description A hydrometeor classification system based on a fuzzy logic technique using dual-polarization radar measurements of precipitation is presented. In this study, five dual-polarization radar measurements (namely horizontal reflectivity, differential reflectivity, specific differential phase, correlation coefficient, and linear depolarization ratio) and altitude relating to environmental melting layer are used as input variables of the system. The hydrometeor classification system chooses one of nine different hydrometeor categories as output. The system presented in this paper is a further development of an existing hydrometeor classification system model developed at Colorado State University (CSU). The hydrometeor classification system is evaluated by comparing inferred results from the CSU CHILL Facility dual-polarization radar measurements with the in situ sample data collected by the T-28 aircraft during the Severe Thunderstorm Electrification and Precipitation Study.
doi_str_mv 10.1109/TGRS.2004.843077
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28904923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1411984</ieee_id><sourcerecordid>2352068301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-53078b8b4a96fb08ea08ae2a69b65c58f13df3410c949acbd7feee7f83a05c23</originalsourceid><addsrcrecordid>eNqNkUGL1TAUhYMo-BzdC26CC131eZMmbeJOBp0RBgR9-3Cb3kqGtnkm7cDz15tnxQEXg6sLud85yclh7KWAvRBg3x2uvn7bSwC1N6qGtn3EdkJrU0Gj1GO2A2GbShorn7JnOd8CCKVFu2On61Of4kQLxcT9iDmHIXhcQpx5PuWFJr7mMH_n_YpjdYwjpvBzWyfsMfGJMK-JJpqX_J5PsaeRh-mY4t12xnHueShmYVn5HaW_9s_ZkwHHTC_-zAt2-PTxcHld3Xy5-nz54abySsNS6RLGdKZTaJuhA0MIBkliY7tGe20GUfdDrQR4qyz6rm8HImoHUyNoL-sL9nazLU_6sVJe3BSyp3HEmeKanbGNFLUwdSHfPEiW3wNl5f-AIK2V57tf_wPexjXNJa0zTdso0L8h2CCfYs6JBndMYcJ0cgLcuVp3rtadq3VbtUXyapOEEvUeV0LYQvwCORSizQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867640522</pqid></control><display><type>article</type><title>Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, S. ; Chandrasekar, V. ; Bringi, V.N.</creator><creatorcontrib>Lim, S. ; Chandrasekar, V. ; Bringi, V.N.</creatorcontrib><description>A hydrometeor classification system based on a fuzzy logic technique using dual-polarization radar measurements of precipitation is presented. In this study, five dual-polarization radar measurements (namely horizontal reflectivity, differential reflectivity, specific differential phase, correlation coefficient, and linear depolarization ratio) and altitude relating to environmental melting layer are used as input variables of the system. The hydrometeor classification system chooses one of nine different hydrometeor categories as output. The system presented in this paper is a further development of an existing hydrometeor classification system model developed at Colorado State University (CSU). The hydrometeor classification system is evaluated by comparing inferred results from the CSU CHILL Facility dual-polarization radar measurements with the in situ sample data collected by the T-28 aircraft during the Severe Thunderstorm Electrification and Precipitation Study.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2004.843077</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Atmospheric modeling ; Categories ; Classification ; Colorado State University CHILL (CSU-CHILL) radar ; Depolarization ; dual-polarization radar measurements ; Fuzzy logic ; hydrometeor classification ; Hydrometeors ; Input variables ; Mathematical models ; Precipitation ; Radar detection ; Radar measurement ; Radar measurements ; Rain ; Reflectivity ; Severe Thunderstorm Electrification and Precipitation Study (STEPS) ; Shape measurement ; Storms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.792-801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-53078b8b4a96fb08ea08ae2a69b65c58f13df3410c949acbd7feee7f83a05c23</citedby><cites>FETCH-LOGICAL-c450t-53078b8b4a96fb08ea08ae2a69b65c58f13df3410c949acbd7feee7f83a05c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1411984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1411984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, S.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Bringi, V.N.</creatorcontrib><title>Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A hydrometeor classification system based on a fuzzy logic technique using dual-polarization radar measurements of precipitation is presented. In this study, five dual-polarization radar measurements (namely horizontal reflectivity, differential reflectivity, specific differential phase, correlation coefficient, and linear depolarization ratio) and altitude relating to environmental melting layer are used as input variables of the system. The hydrometeor classification system chooses one of nine different hydrometeor categories as output. The system presented in this paper is a further development of an existing hydrometeor classification system model developed at Colorado State University (CSU). The hydrometeor classification system is evaluated by comparing inferred results from the CSU CHILL Facility dual-polarization radar measurements with the in situ sample data collected by the T-28 aircraft during the Severe Thunderstorm Electrification and Precipitation Study.</description><subject>Additives</subject><subject>Atmospheric modeling</subject><subject>Categories</subject><subject>Classification</subject><subject>Colorado State University CHILL (CSU-CHILL) radar</subject><subject>Depolarization</subject><subject>dual-polarization radar measurements</subject><subject>Fuzzy logic</subject><subject>hydrometeor classification</subject><subject>Hydrometeors</subject><subject>Input variables</subject><subject>Mathematical models</subject><subject>Precipitation</subject><subject>Radar detection</subject><subject>Radar measurement</subject><subject>Radar measurements</subject><subject>Rain</subject><subject>Reflectivity</subject><subject>Severe Thunderstorm Electrification and Precipitation Study (STEPS)</subject><subject>Shape measurement</subject><subject>Storms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUGL1TAUhYMo-BzdC26CC131eZMmbeJOBp0RBgR9-3Cb3kqGtnkm7cDz15tnxQEXg6sLud85yclh7KWAvRBg3x2uvn7bSwC1N6qGtn3EdkJrU0Gj1GO2A2GbShorn7JnOd8CCKVFu2On61Of4kQLxcT9iDmHIXhcQpx5PuWFJr7mMH_n_YpjdYwjpvBzWyfsMfGJMK-JJpqX_J5PsaeRh-mY4t12xnHueShmYVn5HaW_9s_ZkwHHTC_-zAt2-PTxcHld3Xy5-nz54abySsNS6RLGdKZTaJuhA0MIBkliY7tGe20GUfdDrQR4qyz6rm8HImoHUyNoL-sL9nazLU_6sVJe3BSyp3HEmeKanbGNFLUwdSHfPEiW3wNl5f-AIK2V57tf_wPexjXNJa0zTdso0L8h2CCfYs6JBndMYcJ0cgLcuVp3rtadq3VbtUXyapOEEvUeV0LYQvwCORSizQ</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Lim, S.</creator><creator>Chandrasekar, V.</creator><creator>Bringi, V.N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7U5</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20050401</creationdate><title>Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification</title><author>Lim, S. ; Chandrasekar, V. ; Bringi, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-53078b8b4a96fb08ea08ae2a69b65c58f13df3410c949acbd7feee7f83a05c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Additives</topic><topic>Atmospheric modeling</topic><topic>Categories</topic><topic>Classification</topic><topic>Colorado State University CHILL (CSU-CHILL) radar</topic><topic>Depolarization</topic><topic>dual-polarization radar measurements</topic><topic>Fuzzy logic</topic><topic>hydrometeor classification</topic><topic>Hydrometeors</topic><topic>Input variables</topic><topic>Mathematical models</topic><topic>Precipitation</topic><topic>Radar detection</topic><topic>Radar measurement</topic><topic>Radar measurements</topic><topic>Rain</topic><topic>Reflectivity</topic><topic>Severe Thunderstorm Electrification and Precipitation Study (STEPS)</topic><topic>Shape measurement</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, S.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Bringi, V.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, S.</au><au>Chandrasekar, V.</au><au>Bringi, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2005-04-01</date><risdate>2005</risdate><volume>43</volume><issue>4</issue><spage>792</spage><epage>801</epage><pages>792-801</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A hydrometeor classification system based on a fuzzy logic technique using dual-polarization radar measurements of precipitation is presented. In this study, five dual-polarization radar measurements (namely horizontal reflectivity, differential reflectivity, specific differential phase, correlation coefficient, and linear depolarization ratio) and altitude relating to environmental melting layer are used as input variables of the system. The hydrometeor classification system chooses one of nine different hydrometeor categories as output. The system presented in this paper is a further development of an existing hydrometeor classification system model developed at Colorado State University (CSU). The hydrometeor classification system is evaluated by comparing inferred results from the CSU CHILL Facility dual-polarization radar measurements with the in situ sample data collected by the T-28 aircraft during the Severe Thunderstorm Electrification and Precipitation Study.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2004.843077</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2005-04, Vol.43 (4), p.792-801
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_28904923
source IEEE Electronic Library (IEL)
subjects Additives
Atmospheric modeling
Categories
Classification
Colorado State University CHILL (CSU-CHILL) radar
Depolarization
dual-polarization radar measurements
Fuzzy logic
hydrometeor classification
Hydrometeors
Input variables
Mathematical models
Precipitation
Radar detection
Radar measurement
Radar measurements
Rain
Reflectivity
Severe Thunderstorm Electrification and Precipitation Study (STEPS)
Shape measurement
Storms
title Hydrometeor classification system using dual-polarization radar measurements: model improvements and in situ verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrometeor%20classification%20system%20using%20dual-polarization%20radar%20measurements:%20model%20improvements%20and%20in%20situ%20verification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Lim,%20S.&rft.date=2005-04-01&rft.volume=43&rft.issue=4&rft.spage=792&rft.epage=801&rft.pages=792-801&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2004.843077&rft_dat=%3Cproquest_RIE%3E2352068301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867640522&rft_id=info:pmid/&rft_ieee_id=1411984&rfr_iscdi=true