Doppler ambiguity resolution using multiple PRF

An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1997-07, Vol.33 (3), p.738-751
Hauptverfasser: Ferrari, A., Berenguer, C., Alengrin, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 3
container_start_page 738
container_title IEEE transactions on aerospace and electronic systems
container_volume 33
creator Ferrari, A.
Berenguer, C.
Alengrin, G.
description An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates for each PRF, and a quasi maximum likelihood criterion is maximized for ambiguity order estimation. The fast implementation of this nonambiguous estimation procedure is based on the fast Fourier transform (FFT), The proposed waveform allows full exploitation of any (even) number of PRFs, which appears to be important for estimation improvement. The effects of the waveform parameters and the folded frequency estimation variance on the performance of the ambiguity order estimation procedure are evaluated theoretically and through computer simulations. Mean square error (MSE) curves are given to assess the Doppler frequency estimation accuracy. Finally, the new method is compared with a classical technique and the implementation of the algorithm in a clutter environment is addressed.
doi_str_mv 10.1109/7.599236
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28904280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>599236</ieee_id><sourcerecordid>28904280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1c4c21c840feb4d6115fdcc38a99b8dc75e03be0efa3ca99e6bd4e3c7545932a3</originalsourceid><addsrcrecordid>eNqN0E1Lw0AQBuBFFKxV8OwpBxEvafc7u0epVoWCInoOm82krOTL3eTQf--WlF71NMzMw3t4EbomeEEI1stsIbSmTJ6gGREiS7XE7BTNMCYq1VSQc3QRwndcueJshpaPXd_X4BPTFG47umGXeAhdPQ6ua5MxuHabNGM9uIiS94_1JTqrTB3g6jDn6Gv99Ll6STdvz6-rh01qmZRDSiy3lFjFcQUFLyUhoiqtZcpoXajSZgIwKwBDZZiNN5BFyYHFOxeaUcPm6G7K7X33M0IY8sYFC3VtWujGkFOlMacK_wNSKQSRf8PIeKwlwvsJWt-F4KHKe-8a43c5wfm-4zzLp44jvT1kmmBNXXnTWheOnmaSKbxnNxNzAHD8HjJ-AejMgoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26554014</pqid></control><display><type>article</type><title>Doppler ambiguity resolution using multiple PRF</title><source>IEEE Electronic Library (IEL)</source><creator>Ferrari, A. ; Berenguer, C. ; Alengrin, G.</creator><creatorcontrib>Ferrari, A. ; Berenguer, C. ; Alengrin, G.</creatorcontrib><description>An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates for each PRF, and a quasi maximum likelihood criterion is maximized for ambiguity order estimation. The fast implementation of this nonambiguous estimation procedure is based on the fast Fourier transform (FFT), The proposed waveform allows full exploitation of any (even) number of PRFs, which appears to be important for estimation improvement. The effects of the waveform parameters and the folded frequency estimation variance on the performance of the ambiguity order estimation procedure are evaluated theoretically and through computer simulations. Mean square error (MSE) curves are given to assess the Doppler frequency estimation accuracy. Finally, the new method is compared with a classical technique and the implementation of the algorithm in a clutter environment is addressed.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/7.599236</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Clutter ; Doppler radar ; Exact sciences and technology ; Fast Fourier transforms ; Frequency estimation ; Maximum likelihood estimation ; Pulse measurements ; Radar cross section ; Radar tracking ; Radiolocalization and radionavigation ; Signal resolution ; Telecommunications ; Telecommunications and information theory ; Velocity measurement</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1997-07, Vol.33 (3), p.738-751</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1c4c21c840feb4d6115fdcc38a99b8dc75e03be0efa3ca99e6bd4e3c7545932a3</citedby><cites>FETCH-LOGICAL-c366t-1c4c21c840feb4d6115fdcc38a99b8dc75e03be0efa3ca99e6bd4e3c7545932a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/599236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/599236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2763806$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrari, A.</creatorcontrib><creatorcontrib>Berenguer, C.</creatorcontrib><creatorcontrib>Alengrin, G.</creatorcontrib><title>Doppler ambiguity resolution using multiple PRF</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates for each PRF, and a quasi maximum likelihood criterion is maximized for ambiguity order estimation. The fast implementation of this nonambiguous estimation procedure is based on the fast Fourier transform (FFT), The proposed waveform allows full exploitation of any (even) number of PRFs, which appears to be important for estimation improvement. The effects of the waveform parameters and the folded frequency estimation variance on the performance of the ambiguity order estimation procedure are evaluated theoretically and through computer simulations. Mean square error (MSE) curves are given to assess the Doppler frequency estimation accuracy. Finally, the new method is compared with a classical technique and the implementation of the algorithm in a clutter environment is addressed.</description><subject>Applied sciences</subject><subject>Clutter</subject><subject>Doppler radar</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Frequency estimation</subject><subject>Maximum likelihood estimation</subject><subject>Pulse measurements</subject><subject>Radar cross section</subject><subject>Radar tracking</subject><subject>Radiolocalization and radionavigation</subject><subject>Signal resolution</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Velocity measurement</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0E1Lw0AQBuBFFKxV8OwpBxEvafc7u0epVoWCInoOm82krOTL3eTQf--WlF71NMzMw3t4EbomeEEI1stsIbSmTJ6gGREiS7XE7BTNMCYq1VSQc3QRwndcueJshpaPXd_X4BPTFG47umGXeAhdPQ6ua5MxuHabNGM9uIiS94_1JTqrTB3g6jDn6Gv99Ll6STdvz6-rh01qmZRDSiy3lFjFcQUFLyUhoiqtZcpoXajSZgIwKwBDZZiNN5BFyYHFOxeaUcPm6G7K7X33M0IY8sYFC3VtWujGkFOlMacK_wNSKQSRf8PIeKwlwvsJWt-F4KHKe-8a43c5wfm-4zzLp44jvT1kmmBNXXnTWheOnmaSKbxnNxNzAHD8HjJ-AejMgoU</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Ferrari, A.</creator><creator>Berenguer, C.</creator><creator>Alengrin, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19970701</creationdate><title>Doppler ambiguity resolution using multiple PRF</title><author>Ferrari, A. ; Berenguer, C. ; Alengrin, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1c4c21c840feb4d6115fdcc38a99b8dc75e03be0efa3ca99e6bd4e3c7545932a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Clutter</topic><topic>Doppler radar</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Frequency estimation</topic><topic>Maximum likelihood estimation</topic><topic>Pulse measurements</topic><topic>Radar cross section</topic><topic>Radar tracking</topic><topic>Radiolocalization and radionavigation</topic><topic>Signal resolution</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrari, A.</creatorcontrib><creatorcontrib>Berenguer, C.</creatorcontrib><creatorcontrib>Alengrin, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrari, A.</au><au>Berenguer, C.</au><au>Alengrin, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doppler ambiguity resolution using multiple PRF</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1997-07-01</date><risdate>1997</risdate><volume>33</volume><issue>3</issue><spage>738</spage><epage>751</epage><pages>738-751</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>An algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF) is presented. It relies on the choice of particular values for the PRFs. The folded frequency of the target signal is obtained by averaging the folded frequency estimates for each PRF, and a quasi maximum likelihood criterion is maximized for ambiguity order estimation. The fast implementation of this nonambiguous estimation procedure is based on the fast Fourier transform (FFT), The proposed waveform allows full exploitation of any (even) number of PRFs, which appears to be important for estimation improvement. The effects of the waveform parameters and the folded frequency estimation variance on the performance of the ambiguity order estimation procedure are evaluated theoretically and through computer simulations. Mean square error (MSE) curves are given to assess the Doppler frequency estimation accuracy. Finally, the new method is compared with a classical technique and the implementation of the algorithm in a clutter environment is addressed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/7.599236</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 1997-07, Vol.33 (3), p.738-751
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_miscellaneous_28904280
source IEEE Electronic Library (IEL)
subjects Applied sciences
Clutter
Doppler radar
Exact sciences and technology
Fast Fourier transforms
Frequency estimation
Maximum likelihood estimation
Pulse measurements
Radar cross section
Radar tracking
Radiolocalization and radionavigation
Signal resolution
Telecommunications
Telecommunications and information theory
Velocity measurement
title Doppler ambiguity resolution using multiple PRF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doppler%20ambiguity%20resolution%20using%20multiple%20PRF&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ferrari,%20A.&rft.date=1997-07-01&rft.volume=33&rft.issue=3&rft.spage=738&rft.epage=751&rft.pages=738-751&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/7.599236&rft_dat=%3Cproquest_RIE%3E28904280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26554014&rft_id=info:pmid/&rft_ieee_id=599236&rfr_iscdi=true