Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy
Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term reco...
Gespeichert in:
Veröffentlicht in: | Nature methods 2023-12, Vol.20 (12), p.1957-1970 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1970 |
---|---|
container_issue | 12 |
container_start_page | 1957 |
container_title | Nature methods |
container_volume | 20 |
creator | Zhang, Guoxun Li, Xiaopeng Zhang, Yuanlong Han, Xiaofei Li, Xinyang Yu, Jinqiang Liu, Boqi Wu, Jiamin Yu, Li Dai, Qionghai |
description | Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive
Dictyostelium
cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution. |
doi_str_mv | 10.1038/s41592-023-02058-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889997659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889997659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS0EAgr8AQ6VJS5cDOPEk9hHikqLhMSFu5XYkyUocbb2Bin_vl4WWokDB2ss-Zs3fvMYO5dwJaHU10lJNIWAoswHUAuzx44lKi1qCbj_cQcjj9i3lF4AylIVeMiOytpgrQpzzPyPfhJd7Cn4YeHDFFZiQ3HkaW4dDcM8NJH7JTRj73gkN0XfhxVvF55o6ESa1xRf-0Se92OzIk7huQmORgobnlvilNy0Xk7ZQdcMic7e6wl7uvv5dPtbPDz-ur-9eRBOSbMRhcdSoUINpBW2snCtN4igwIOrJLZKA4AzNdV11zjQHVJVeSTlVGeq8oRd7mTXcfozU9rYsU9bF02gaU620NoYU1doMnrxCX2Z5hjy5zJljNS6VpipYkdtjaRInV3H7DMuVoLdRmB3EdgcgX2LwG6lv79Lz-1I_l_Lx84zUO6AlJ_CiuL_2V_I_gWzqpIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899188745</pqid></control><display><type>article</type><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</creator><creatorcontrib>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</creatorcontrib><description>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive
Dictyostelium
cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02058-9</identifier><identifier>PMID: 37957429</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1564 ; 631/1647/245/2225 ; 631/80/2373 ; Biocompatibility ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Confocal microscopy ; Fluorescence microscopy ; Image enhancement ; Interrogation ; Life Sciences ; Microscopy ; Noise reduction ; Organelles ; Phototoxicity ; Proteomics ; Recording ; Signal to noise ratio ; Stochasticity</subject><ispartof>Nature methods, 2023-12, Vol.20 (12), p.1957-1970</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</citedby><cites>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</cites><orcidid>0000-0002-8562-6488 ; 0000-0001-7043-3061 ; 0000-0002-3757-0758 ; 0000-0003-3880-5448 ; 0000-0003-3479-1026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02058-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02058-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37957429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guoxun</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Yuanlong</creatorcontrib><creatorcontrib>Han, Xiaofei</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Liu, Boqi</creatorcontrib><creatorcontrib>Wu, Jiamin</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive
Dictyostelium
cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</description><subject>631/114/1564</subject><subject>631/1647/245/2225</subject><subject>631/80/2373</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Confocal microscopy</subject><subject>Fluorescence microscopy</subject><subject>Image enhancement</subject><subject>Interrogation</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Noise reduction</subject><subject>Organelles</subject><subject>Phototoxicity</subject><subject>Proteomics</subject><subject>Recording</subject><subject>Signal to noise ratio</subject><subject>Stochasticity</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFP3DAQhS0EAgr8AQ6VJS5cDOPEk9hHikqLhMSFu5XYkyUocbb2Bin_vl4WWokDB2ss-Zs3fvMYO5dwJaHU10lJNIWAoswHUAuzx44lKi1qCbj_cQcjj9i3lF4AylIVeMiOytpgrQpzzPyPfhJd7Cn4YeHDFFZiQ3HkaW4dDcM8NJH7JTRj73gkN0XfhxVvF55o6ESa1xRf-0Se92OzIk7huQmORgobnlvilNy0Xk7ZQdcMic7e6wl7uvv5dPtbPDz-ur-9eRBOSbMRhcdSoUINpBW2snCtN4igwIOrJLZKA4AzNdV11zjQHVJVeSTlVGeq8oRd7mTXcfozU9rYsU9bF02gaU620NoYU1doMnrxCX2Z5hjy5zJljNS6VpipYkdtjaRInV3H7DMuVoLdRmB3EdgcgX2LwG6lv79Lz-1I_l_Lx84zUO6AlJ_CiuL_2V_I_gWzqpIg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Guoxun</creator><creator>Li, Xiaopeng</creator><creator>Zhang, Yuanlong</creator><creator>Han, Xiaofei</creator><creator>Li, Xinyang</creator><creator>Yu, Jinqiang</creator><creator>Liu, Boqi</creator><creator>Wu, Jiamin</creator><creator>Yu, Li</creator><creator>Dai, Qionghai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8562-6488</orcidid><orcidid>https://orcid.org/0000-0001-7043-3061</orcidid><orcidid>https://orcid.org/0000-0002-3757-0758</orcidid><orcidid>https://orcid.org/0000-0003-3880-5448</orcidid><orcidid>https://orcid.org/0000-0003-3479-1026</orcidid></search><sort><creationdate>20231201</creationdate><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><author>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1564</topic><topic>631/1647/245/2225</topic><topic>631/80/2373</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Confocal microscopy</topic><topic>Fluorescence microscopy</topic><topic>Image enhancement</topic><topic>Interrogation</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Noise reduction</topic><topic>Organelles</topic><topic>Phototoxicity</topic><topic>Proteomics</topic><topic>Recording</topic><topic>Signal to noise ratio</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoxun</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Yuanlong</creatorcontrib><creatorcontrib>Han, Xiaofei</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Liu, Boqi</creatorcontrib><creatorcontrib>Wu, Jiamin</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoxun</au><au>Li, Xiaopeng</au><au>Zhang, Yuanlong</au><au>Han, Xiaofei</au><au>Li, Xinyang</au><au>Yu, Jinqiang</au><au>Liu, Boqi</au><au>Wu, Jiamin</au><au>Yu, Li</au><au>Dai, Qionghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>20</volume><issue>12</issue><spage>1957</spage><epage>1970</epage><pages>1957-1970</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive
Dictyostelium
cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit.
DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37957429</pmid><doi>10.1038/s41592-023-02058-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8562-6488</orcidid><orcidid>https://orcid.org/0000-0001-7043-3061</orcidid><orcidid>https://orcid.org/0000-0002-3757-0758</orcidid><orcidid>https://orcid.org/0000-0003-3880-5448</orcidid><orcidid>https://orcid.org/0000-0003-3479-1026</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2023-12, Vol.20 (12), p.1957-1970 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889997659 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/114/1564 631/1647/245/2225 631/80/2373 Biocompatibility Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Confocal microscopy Fluorescence microscopy Image enhancement Interrogation Life Sciences Microscopy Noise reduction Organelles Phototoxicity Proteomics Recording Signal to noise ratio Stochasticity |
title | Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-friendly%20long-term%20subcellular%20dynamic%20recording%20by%20self-supervised%20image%20enhancement%20microscopy&rft.jtitle=Nature%20methods&rft.au=Zhang,%20Guoxun&rft.date=2023-12-01&rft.volume=20&rft.issue=12&rft.spage=1957&rft.epage=1970&rft.pages=1957-1970&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02058-9&rft_dat=%3Cproquest_cross%3E2889997659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899188745&rft_id=info:pmid/37957429&rfr_iscdi=true |