Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy

Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2023-12, Vol.20 (12), p.1957-1970
Hauptverfasser: Zhang, Guoxun, Li, Xiaopeng, Zhang, Yuanlong, Han, Xiaofei, Li, Xinyang, Yu, Jinqiang, Liu, Boqi, Wu, Jiamin, Yu, Li, Dai, Qionghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1970
container_issue 12
container_start_page 1957
container_title Nature methods
container_volume 20
creator Zhang, Guoxun
Li, Xiaopeng
Zhang, Yuanlong
Han, Xiaofei
Li, Xinyang
Yu, Jinqiang
Liu, Boqi
Wu, Jiamin
Yu, Li
Dai, Qionghai
description Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit. DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.
doi_str_mv 10.1038/s41592-023-02058-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889997659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889997659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhS0EAgr8AQ6VJS5cDOPEk9hHikqLhMSFu5XYkyUocbb2Bin_vl4WWokDB2ss-Zs3fvMYO5dwJaHU10lJNIWAoswHUAuzx44lKi1qCbj_cQcjj9i3lF4AylIVeMiOytpgrQpzzPyPfhJd7Cn4YeHDFFZiQ3HkaW4dDcM8NJH7JTRj73gkN0XfhxVvF55o6ESa1xRf-0Se92OzIk7huQmORgobnlvilNy0Xk7ZQdcMic7e6wl7uvv5dPtbPDz-ur-9eRBOSbMRhcdSoUINpBW2snCtN4igwIOrJLZKA4AzNdV11zjQHVJVeSTlVGeq8oRd7mTXcfozU9rYsU9bF02gaU620NoYU1doMnrxCX2Z5hjy5zJljNS6VpipYkdtjaRInV3H7DMuVoLdRmB3EdgcgX2LwG6lv79Lz-1I_l_Lx84zUO6AlJ_CiuL_2V_I_gWzqpIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899188745</pqid></control><display><type>article</type><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</creator><creatorcontrib>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</creatorcontrib><description>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit. DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-023-02058-9</identifier><identifier>PMID: 37957429</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1564 ; 631/1647/245/2225 ; 631/80/2373 ; Biocompatibility ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Confocal microscopy ; Fluorescence microscopy ; Image enhancement ; Interrogation ; Life Sciences ; Microscopy ; Noise reduction ; Organelles ; Phototoxicity ; Proteomics ; Recording ; Signal to noise ratio ; Stochasticity</subject><ispartof>Nature methods, 2023-12, Vol.20 (12), p.1957-1970</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</citedby><cites>FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</cites><orcidid>0000-0002-8562-6488 ; 0000-0001-7043-3061 ; 0000-0002-3757-0758 ; 0000-0003-3880-5448 ; 0000-0003-3479-1026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-023-02058-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-023-02058-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37957429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guoxun</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Yuanlong</creatorcontrib><creatorcontrib>Han, Xiaofei</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Liu, Boqi</creatorcontrib><creatorcontrib>Wu, Jiamin</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit. DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</description><subject>631/114/1564</subject><subject>631/1647/245/2225</subject><subject>631/80/2373</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Confocal microscopy</subject><subject>Fluorescence microscopy</subject><subject>Image enhancement</subject><subject>Interrogation</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Noise reduction</subject><subject>Organelles</subject><subject>Phototoxicity</subject><subject>Proteomics</subject><subject>Recording</subject><subject>Signal to noise ratio</subject><subject>Stochasticity</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFP3DAQhS0EAgr8AQ6VJS5cDOPEk9hHikqLhMSFu5XYkyUocbb2Bin_vl4WWokDB2ss-Zs3fvMYO5dwJaHU10lJNIWAoswHUAuzx44lKi1qCbj_cQcjj9i3lF4AylIVeMiOytpgrQpzzPyPfhJd7Cn4YeHDFFZiQ3HkaW4dDcM8NJH7JTRj73gkN0XfhxVvF55o6ESa1xRf-0Se92OzIk7huQmORgobnlvilNy0Xk7ZQdcMic7e6wl7uvv5dPtbPDz-ur-9eRBOSbMRhcdSoUINpBW2snCtN4igwIOrJLZKA4AzNdV11zjQHVJVeSTlVGeq8oRd7mTXcfozU9rYsU9bF02gaU620NoYU1doMnrxCX2Z5hjy5zJljNS6VpipYkdtjaRInV3H7DMuVoLdRmB3EdgcgX2LwG6lv79Lz-1I_l_Lx84zUO6AlJ_CiuL_2V_I_gWzqpIg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhang, Guoxun</creator><creator>Li, Xiaopeng</creator><creator>Zhang, Yuanlong</creator><creator>Han, Xiaofei</creator><creator>Li, Xinyang</creator><creator>Yu, Jinqiang</creator><creator>Liu, Boqi</creator><creator>Wu, Jiamin</creator><creator>Yu, Li</creator><creator>Dai, Qionghai</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8562-6488</orcidid><orcidid>https://orcid.org/0000-0001-7043-3061</orcidid><orcidid>https://orcid.org/0000-0002-3757-0758</orcidid><orcidid>https://orcid.org/0000-0003-3880-5448</orcidid><orcidid>https://orcid.org/0000-0003-3479-1026</orcidid></search><sort><creationdate>20231201</creationdate><title>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</title><author>Zhang, Guoxun ; Li, Xiaopeng ; Zhang, Yuanlong ; Han, Xiaofei ; Li, Xinyang ; Yu, Jinqiang ; Liu, Boqi ; Wu, Jiamin ; Yu, Li ; Dai, Qionghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2d53454580e845b12cbd955040d0c615b48000c97e77fac08f5e66d5e4c4f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/1564</topic><topic>631/1647/245/2225</topic><topic>631/80/2373</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Confocal microscopy</topic><topic>Fluorescence microscopy</topic><topic>Image enhancement</topic><topic>Interrogation</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Noise reduction</topic><topic>Organelles</topic><topic>Phototoxicity</topic><topic>Proteomics</topic><topic>Recording</topic><topic>Signal to noise ratio</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guoxun</creatorcontrib><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Yuanlong</creatorcontrib><creatorcontrib>Han, Xiaofei</creatorcontrib><creatorcontrib>Li, Xinyang</creatorcontrib><creatorcontrib>Yu, Jinqiang</creatorcontrib><creatorcontrib>Liu, Boqi</creatorcontrib><creatorcontrib>Wu, Jiamin</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><creatorcontrib>Dai, Qionghai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guoxun</au><au>Li, Xiaopeng</au><au>Zhang, Yuanlong</au><au>Han, Xiaofei</au><au>Li, Xinyang</au><au>Yu, Jinqiang</au><au>Liu, Boqi</au><au>Wu, Jiamin</au><au>Yu, Li</au><au>Dai, Qionghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>20</volume><issue>12</issue><spage>1957</spage><epage>1970</epage><pages>1957-1970</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Fluorescence microscopy has become an indispensable tool for revealing the dynamic regulation of cells and organelles. However, stochastic noise inherently restricts optical interrogation quality and exacerbates observation fidelity when balancing the joint demands of high frame rate, long-term recording and low phototoxicity. Here we propose DeepSeMi, a self-supervised-learning-based denoising framework capable of increasing signal-to-noise ratio by over 12 dB across various conditions. With the introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi effectively denoises images with no loss of spatiotemporal resolution. In combination with confocal microscopy, DeepSeMi allows for recording organelle interactions in four colors at high frame rates across tens of thousands of frames, monitoring migrasomes and retractosomes over a half day, and imaging ultra-phototoxicity-sensitive Dictyostelium cells over thousands of frames. Through comprehensive validations across various samples and instruments, we prove DeepSeMi to be a versatile and biocompatible tool for breaking the shot-noise limit. DeepSeMi is a self-supervised denoising framework that can enhance SNR over 12 dB across diverse samples and imaging modalities. DeepSeMi enables extended longitudinal imaging of subcellular dynamics with high spatiotemporal resolution.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37957429</pmid><doi>10.1038/s41592-023-02058-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8562-6488</orcidid><orcidid>https://orcid.org/0000-0001-7043-3061</orcidid><orcidid>https://orcid.org/0000-0002-3757-0758</orcidid><orcidid>https://orcid.org/0000-0003-3880-5448</orcidid><orcidid>https://orcid.org/0000-0003-3479-1026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2023-12, Vol.20 (12), p.1957-1970
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2889997659
source Nature; SpringerLink Journals - AutoHoldings
subjects 631/114/1564
631/1647/245/2225
631/80/2373
Biocompatibility
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Confocal microscopy
Fluorescence microscopy
Image enhancement
Interrogation
Life Sciences
Microscopy
Noise reduction
Organelles
Phototoxicity
Proteomics
Recording
Signal to noise ratio
Stochasticity
title Bio-friendly long-term subcellular dynamic recording by self-supervised image enhancement microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-friendly%20long-term%20subcellular%20dynamic%20recording%20by%20self-supervised%20image%20enhancement%20microscopy&rft.jtitle=Nature%20methods&rft.au=Zhang,%20Guoxun&rft.date=2023-12-01&rft.volume=20&rft.issue=12&rft.spage=1957&rft.epage=1970&rft.pages=1957-1970&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-023-02058-9&rft_dat=%3Cproquest_cross%3E2889997659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899188745&rft_id=info:pmid/37957429&rfr_iscdi=true