A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries

Polymer electrolytes provide a visible pathway for the construction of high‐safety quasi‐solid‐state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-12, Vol.62 (52), p.e202315076-n/a
Hauptverfasser: Luo, Jun, Yang, Mingrui, Wang, Denghui, Zhang, Jiyu, Song, Keming, Tang, Guochuan, Xie, Zhengkun, Guo, Xiaoniu, Shi, Yu, Chen, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e202315076
container_title Angewandte Chemie International Edition
container_volume 62
creator Luo, Jun
Yang, Mingrui
Wang, Denghui
Zhang, Jiyu
Song, Keming
Tang, Guochuan
Xie, Zhengkun
Guo, Xiaoniu
Shi, Yu
Chen, Weihua
description Polymer electrolytes provide a visible pathway for the construction of high‐safety quasi‐solid‐state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na‐ion conduction via the cooperation of polymer‐salt, ionic liquid, and electron‐rich additive. Especially, PVDF‐HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+‐FSI−) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron‐rich Nerolin with π‐cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F‐rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10−3 S cm−1) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance. A fast Na‐ion conduction polymer electrolyte was designed through a triangular synergy strategy, which limits the migration of ionic liquid and facilitates the dissociation of salt, resulting in a faster Na+ conduction in the polymer electrolyte. The modified polymer electrolyte led to a salt‐decomposition dominated interphase, which effectively suppressed gas evolution from ionic liquid decomposition, ensuring battery safety.
doi_str_mv 10.1002/anie.202315076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889994265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889994265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4136-b544136e2da72da4d995b0116c656655f274a1c6ccb2ba077c96718bd7c43f133</originalsourceid><addsrcrecordid>eNqFkctKJDEYhYOMeBu3sxwCbtxUm0slqSzbptUGUYfWdUilUhKprmiSmqF2PoLP6JOYpr2Am1mEc0K-HH7-A8AvjCYYIXKie2cnBBGKGRJ8C-xhRnBBhaA_si8pLUTF8C7Yj_Eh81WF-A7YpUJyJBnaA2EKz3RM8Eq_Pr8sfA9nvm8Gk1y2N74bVzbAeWdNCvmSLPzrNLwNTvf3Q6cDXI69DfcjXKagk82m9QH-GXR0OW7pO9esNeU3eKpTssHZ-BNst7qL9vBdD8Dd2fx2dlFcXp8vZtPLwpSY8qJm5VotabTIp2ykZDXCmBvOOGesJaLU2HBjalJrJISRXOCqboQpaYspPQDHm9zH4J8GG5NauWhs1-ne-iGqvAwpZUk4y-jRN_TBD6HP0ykiEZZVRSTP1GRDmeBjDLZVj8GtdBgVRmrdhlq3oT7byB9-v8cO9co2n_jH-jMgN8A_19nxP3FqerWYf4W_AZ1kmQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901988296</pqid></control><display><type>article</type><title>A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries</title><source>Access via Wiley Online Library</source><creator>Luo, Jun ; Yang, Mingrui ; Wang, Denghui ; Zhang, Jiyu ; Song, Keming ; Tang, Guochuan ; Xie, Zhengkun ; Guo, Xiaoniu ; Shi, Yu ; Chen, Weihua</creator><creatorcontrib>Luo, Jun ; Yang, Mingrui ; Wang, Denghui ; Zhang, Jiyu ; Song, Keming ; Tang, Guochuan ; Xie, Zhengkun ; Guo, Xiaoniu ; Shi, Yu ; Chen, Weihua</creatorcontrib><description>Polymer electrolytes provide a visible pathway for the construction of high‐safety quasi‐solid‐state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na‐ion conduction via the cooperation of polymer‐salt, ionic liquid, and electron‐rich additive. Especially, PVDF‐HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+‐FSI−) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron‐rich Nerolin with π‐cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F‐rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10−3 S cm−1) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance. A fast Na‐ion conduction polymer electrolyte was designed through a triangular synergy strategy, which limits the migration of ionic liquid and facilitates the dissociation of salt, resulting in a faster Na+ conduction in the polymer electrolyte. The modified polymer electrolyte led to a salt‐decomposition dominated interphase, which effectively suppressed gas evolution from ionic liquid decomposition, ensuring battery safety.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202315076</identifier><identifier>PMID: 37960950</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cations ; Conduction ; Electrochemistry ; Electrolytes ; Electrolytic cells ; Ion currents ; Ion transport ; Ionic Conductivity ; Ionic liquids ; Molten salt electrolytes ; Polymer Electrolyte ; Polymers ; Room temperature ; Safety ; Salts ; Sodium ; Sodium-Ion Battery ; Solid electrolytes ; Solid-State Battery ; Strategy</subject><ispartof>Angewandte Chemie International Edition, 2023-12, Vol.62 (52), p.e202315076-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4136-b544136e2da72da4d995b0116c656655f274a1c6ccb2ba077c96718bd7c43f133</citedby><cites>FETCH-LOGICAL-c4136-b544136e2da72da4d995b0116c656655f274a1c6ccb2ba077c96718bd7c43f133</cites><orcidid>0000-0002-0548-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202315076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202315076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37960950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yang, Mingrui</creatorcontrib><creatorcontrib>Wang, Denghui</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Tang, Guochuan</creatorcontrib><creatorcontrib>Xie, Zhengkun</creatorcontrib><creatorcontrib>Guo, Xiaoniu</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><title>A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Polymer electrolytes provide a visible pathway for the construction of high‐safety quasi‐solid‐state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na‐ion conduction via the cooperation of polymer‐salt, ionic liquid, and electron‐rich additive. Especially, PVDF‐HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+‐FSI−) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron‐rich Nerolin with π‐cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F‐rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10−3 S cm−1) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance. A fast Na‐ion conduction polymer electrolyte was designed through a triangular synergy strategy, which limits the migration of ionic liquid and facilitates the dissociation of salt, resulting in a faster Na+ conduction in the polymer electrolyte. The modified polymer electrolyte led to a salt‐decomposition dominated interphase, which effectively suppressed gas evolution from ionic liquid decomposition, ensuring battery safety.</description><subject>Cations</subject><subject>Conduction</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Ionic Conductivity</subject><subject>Ionic liquids</subject><subject>Molten salt electrolytes</subject><subject>Polymer Electrolyte</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Safety</subject><subject>Salts</subject><subject>Sodium</subject><subject>Sodium-Ion Battery</subject><subject>Solid electrolytes</subject><subject>Solid-State Battery</subject><subject>Strategy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctKJDEYhYOMeBu3sxwCbtxUm0slqSzbptUGUYfWdUilUhKprmiSmqF2PoLP6JOYpr2Am1mEc0K-HH7-A8AvjCYYIXKie2cnBBGKGRJ8C-xhRnBBhaA_si8pLUTF8C7Yj_Eh81WF-A7YpUJyJBnaA2EKz3RM8Eq_Pr8sfA9nvm8Gk1y2N74bVzbAeWdNCvmSLPzrNLwNTvf3Q6cDXI69DfcjXKagk82m9QH-GXR0OW7pO9esNeU3eKpTssHZ-BNst7qL9vBdD8Dd2fx2dlFcXp8vZtPLwpSY8qJm5VotabTIp2ykZDXCmBvOOGesJaLU2HBjalJrJISRXOCqboQpaYspPQDHm9zH4J8GG5NauWhs1-ne-iGqvAwpZUk4y-jRN_TBD6HP0ykiEZZVRSTP1GRDmeBjDLZVj8GtdBgVRmrdhlq3oT7byB9-v8cO9co2n_jH-jMgN8A_19nxP3FqerWYf4W_AZ1kmQg</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Luo, Jun</creator><creator>Yang, Mingrui</creator><creator>Wang, Denghui</creator><creator>Zhang, Jiyu</creator><creator>Song, Keming</creator><creator>Tang, Guochuan</creator><creator>Xie, Zhengkun</creator><creator>Guo, Xiaoniu</creator><creator>Shi, Yu</creator><creator>Chen, Weihua</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid></search><sort><creationdate>20231221</creationdate><title>A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries</title><author>Luo, Jun ; Yang, Mingrui ; Wang, Denghui ; Zhang, Jiyu ; Song, Keming ; Tang, Guochuan ; Xie, Zhengkun ; Guo, Xiaoniu ; Shi, Yu ; Chen, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4136-b544136e2da72da4d995b0116c656655f274a1c6ccb2ba077c96718bd7c43f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cations</topic><topic>Conduction</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Ionic Conductivity</topic><topic>Ionic liquids</topic><topic>Molten salt electrolytes</topic><topic>Polymer Electrolyte</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Safety</topic><topic>Salts</topic><topic>Sodium</topic><topic>Sodium-Ion Battery</topic><topic>Solid electrolytes</topic><topic>Solid-State Battery</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Yang, Mingrui</creatorcontrib><creatorcontrib>Wang, Denghui</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Tang, Guochuan</creatorcontrib><creatorcontrib>Xie, Zhengkun</creatorcontrib><creatorcontrib>Guo, Xiaoniu</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jun</au><au>Yang, Mingrui</au><au>Wang, Denghui</au><au>Zhang, Jiyu</au><au>Song, Keming</au><au>Tang, Guochuan</au><au>Xie, Zhengkun</au><au>Guo, Xiaoniu</au><au>Shi, Yu</au><au>Chen, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>62</volume><issue>52</issue><spage>e202315076</spage><epage>n/a</epage><pages>e202315076-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Polymer electrolytes provide a visible pathway for the construction of high‐safety quasi‐solid‐state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na‐ion conduction via the cooperation of polymer‐salt, ionic liquid, and electron‐rich additive. Especially, PVDF‐HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+‐FSI−) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron‐rich Nerolin with π‐cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F‐rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10−3 S cm−1) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance. A fast Na‐ion conduction polymer electrolyte was designed through a triangular synergy strategy, which limits the migration of ionic liquid and facilitates the dissociation of salt, resulting in a faster Na+ conduction in the polymer electrolyte. The modified polymer electrolyte led to a salt‐decomposition dominated interphase, which effectively suppressed gas evolution from ionic liquid decomposition, ensuring battery safety.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37960950</pmid><doi>10.1002/anie.202315076</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-12, Vol.62 (52), p.e202315076-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2889994265
source Access via Wiley Online Library
subjects Cations
Conduction
Electrochemistry
Electrolytes
Electrolytic cells
Ion currents
Ion transport
Ionic Conductivity
Ionic liquids
Molten salt electrolytes
Polymer Electrolyte
Polymers
Room temperature
Safety
Salts
Sodium
Sodium-Ion Battery
Solid electrolytes
Solid-State Battery
Strategy
title A Fast Na‐Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi‐Solid‐State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Na%E2%80%90Ion%20Conduction%20Polymer%20Electrolyte%20via%20Triangular%20Synergy%20Strategy%20for%20Quasi%E2%80%90Solid%E2%80%90State%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Luo,%20Jun&rft.date=2023-12-21&rft.volume=62&rft.issue=52&rft.spage=e202315076&rft.epage=n/a&rft.pages=e202315076-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202315076&rft_dat=%3Cproquest_cross%3E2889994265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901988296&rft_id=info:pmid/37960950&rfr_iscdi=true