Antibacterial Effect and Therapy of Chronic Skin Defects Using the Composite Bioscaffold Polycaprolactone/GelitaSpon/Povidone-Iodine in Domestic Dogs
Chronic wounds and the failure of conventional treatment are relatively common in veterinary medicine. Recently, there has been a growing interest in alternative therapeutic approaches and the utilization of biodegradable materials. Their potential application in wound therapy may offer a novel and...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-11, Vol.15 (21), p.4201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic wounds and the failure of conventional treatment are relatively common in veterinary medicine. Recently, there has been a growing interest in alternative therapeutic approaches and the utilization of biodegradable materials. Their potential application in wound therapy may offer a novel and more suitable option compared to conventional treatment methods. Biodegradable materials can be classified into two main categories: natural, synthetic, and a combination of both, which have the potential to have synergistically enhanced properties. In this study, four domestic dogs with clinical symptoms of chronic wounds were enrolled. These wounds underwent treatment utilizing a novel biodegradable composite material composed of gelatin sponge combined with two electrospun layers of polycaprolactone (PCL) along with polyvinylpyrrolidone (PVP) fibers containing povidone-iodine complex (PVP-I). The initial phase of the study was dedicated to evaluating the antibacterial properties of iodine against Staphylococcus aureus and Escherichia coli. On average, wound healing in domestic dogs took 22 days from the initial treatment, and iodine concentrations demonstrated a significant antibacterial effect against Escherichia coli and Staphylococcus aureus. Based on the favorable outcomes observed in wound management, we believe that the utilization of a blend of natural and synthetic biodegradable materials holds promise as an effective wound therapy option. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15214201 |