Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites
The objective of this work is to improve the mechanical properties of polylactic acid (PLA) by incorporating cellulose nanocrystals (CNC) previously obtained from a cellulose pulp extracted from olive tree pruning (OTP) waste. Composites were manufactured by melt processing and injection moulding to...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-11, Vol.15 (21), p.4251 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 4251 |
container_title | Polymers |
container_volume | 15 |
creator | Jurado-Contreras, Sofía Navas-Martos, Francisco J. García-Ruiz, Ángeles Rodríguez-Liébana, José A. La Rubia, M. Dolores |
description | The objective of this work is to improve the mechanical properties of polylactic acid (PLA) by incorporating cellulose nanocrystals (CNC) previously obtained from a cellulose pulp extracted from olive tree pruning (OTP) waste. Composites were manufactured by melt processing and injection moulding to evaluate the effect of the introduction of CNC with conventional manufacturing methods. This OTP-cellulose pulp was subjected to a further purification process by bleaching, thus bringing the cellulose content up to 86.1%wt. This highly purified cellulose was hydrolysed with sulfuric acid to obtain CNCs with an average length of 267 nm and a degradation temperature of 300 °C. The CNCs obtained were used in different percentages (1, 3, and 5%wt.) as reinforcement in the manufacture of PLA-based composites. The effect of incorporating CNC into PLA matrix on the mechanical, water absorption, thermal, structural, and morphological properties was studied. Maximum tensile stress and Young’s modulus improved by 87 and 58%, respectively, by incorporating 3 and 5%wt. CNC. Charpy impact strength increased by 21% with 3%wt. These results were attributed to the good dispersion of CNCs in the matrix, which was corroborated by SEM images. Crystallinity index, glass transition, and melting temperatures were maintained. |
doi_str_mv | 10.3390/polym15214251 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889992417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772535718</galeid><sourcerecordid>A772535718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-20fb409ed70940eb5054402232aeb3732ef5e82a70d9536722fbf61858f79e733</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhleoSCCaI3dLvfSywZ_r3SONUkCKCEJBHFdeZwxGXju1vUi594fjND2UzhxmNHrm49VU1SXBc8Y6fLULbj8SQQmngpxU5xRLVnPW4C__5GfVLKU3XIyLpiHyvPq9HrKy3voXtADnJhcSoHvlg477lJVLyMQworWz74A2EQA9xOkP_qxSBqT8Fi3flZtUtsGjYNDmFWxEd964CbwuREIKPYL1JkQNI_iMCvjDBh3GXUg2Q_panZqyCmZ_40X19HO5WdzWq_XN3eJ6VWsmm1xTbAaOO9hK3HEMg8CCc0wpowoGJhkFI6ClSuJtJ1gjKTWDaUgrWiM7kIxdVN-Pc3cx_Jog5X60SRfZykOYUk_btus6yoks6Lf_0LcwRV-uO1AtE5zgAzU_Ui_KQX-QmKPSxbcwWh08GFvq11JSwYQkbWmojw06hpQimH4X7ajivie4P_yx__RH9gFXc5EC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888354107</pqid></control><display><type>article</type><title>Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Jurado-Contreras, Sofía ; Navas-Martos, Francisco J. ; García-Ruiz, Ángeles ; Rodríguez-Liébana, José A. ; La Rubia, M. Dolores</creator><creatorcontrib>Jurado-Contreras, Sofía ; Navas-Martos, Francisco J. ; García-Ruiz, Ángeles ; Rodríguez-Liébana, José A. ; La Rubia, M. Dolores</creatorcontrib><description>The objective of this work is to improve the mechanical properties of polylactic acid (PLA) by incorporating cellulose nanocrystals (CNC) previously obtained from a cellulose pulp extracted from olive tree pruning (OTP) waste. Composites were manufactured by melt processing and injection moulding to evaluate the effect of the introduction of CNC with conventional manufacturing methods. This OTP-cellulose pulp was subjected to a further purification process by bleaching, thus bringing the cellulose content up to 86.1%wt. This highly purified cellulose was hydrolysed with sulfuric acid to obtain CNCs with an average length of 267 nm and a degradation temperature of 300 °C. The CNCs obtained were used in different percentages (1, 3, and 5%wt.) as reinforcement in the manufacture of PLA-based composites. The effect of incorporating CNC into PLA matrix on the mechanical, water absorption, thermal, structural, and morphological properties was studied. Maximum tensile stress and Young’s modulus improved by 87 and 58%, respectively, by incorporating 3 and 5%wt. CNC. Charpy impact strength increased by 21% with 3%wt. These results were attributed to the good dispersion of CNCs in the matrix, which was corroborated by SEM images. Crystallinity index, glass transition, and melting temperatures were maintained.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15214251</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Air pollution ; Analysis ; Biocompatibility ; Biomass ; Bleaching ; Cellulose ; Cellulose acetate ; Cellulose pulp ; Composite materials ; Composite materials industry ; Food packaging ; Fourier transforms ; Glass transition temperature ; Heat resistance ; Impact strength ; Injection molding ; Lignin ; Mechanical properties ; Modulus of elasticity ; Morphology ; Nanocrystals ; Outdoor air quality ; Plastics ; Polylactic acid ; Polymers ; Production methods ; Pruning ; Raw materials ; Renewable resources ; Sulfuric acid ; Tensile stress ; Water absorption</subject><ispartof>Polymers, 2023-11, Vol.15 (21), p.4251</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-20fb409ed70940eb5054402232aeb3732ef5e82a70d9536722fbf61858f79e733</citedby><cites>FETCH-LOGICAL-c376t-20fb409ed70940eb5054402232aeb3732ef5e82a70d9536722fbf61858f79e733</cites><orcidid>0000-0001-6375-0587 ; 0000-0001-7982-3576 ; 0000-0002-3950-3559 ; 0000-0001-5820-6616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jurado-Contreras, Sofía</creatorcontrib><creatorcontrib>Navas-Martos, Francisco J.</creatorcontrib><creatorcontrib>García-Ruiz, Ángeles</creatorcontrib><creatorcontrib>Rodríguez-Liébana, José A.</creatorcontrib><creatorcontrib>La Rubia, M. Dolores</creatorcontrib><title>Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites</title><title>Polymers</title><description>The objective of this work is to improve the mechanical properties of polylactic acid (PLA) by incorporating cellulose nanocrystals (CNC) previously obtained from a cellulose pulp extracted from olive tree pruning (OTP) waste. Composites were manufactured by melt processing and injection moulding to evaluate the effect of the introduction of CNC with conventional manufacturing methods. This OTP-cellulose pulp was subjected to a further purification process by bleaching, thus bringing the cellulose content up to 86.1%wt. This highly purified cellulose was hydrolysed with sulfuric acid to obtain CNCs with an average length of 267 nm and a degradation temperature of 300 °C. The CNCs obtained were used in different percentages (1, 3, and 5%wt.) as reinforcement in the manufacture of PLA-based composites. The effect of incorporating CNC into PLA matrix on the mechanical, water absorption, thermal, structural, and morphological properties was studied. Maximum tensile stress and Young’s modulus improved by 87 and 58%, respectively, by incorporating 3 and 5%wt. CNC. Charpy impact strength increased by 21% with 3%wt. These results were attributed to the good dispersion of CNCs in the matrix, which was corroborated by SEM images. Crystallinity index, glass transition, and melting temperatures were maintained.</description><subject>Agricultural production</subject><subject>Air pollution</subject><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biomass</subject><subject>Bleaching</subject><subject>Cellulose</subject><subject>Cellulose acetate</subject><subject>Cellulose pulp</subject><subject>Composite materials</subject><subject>Composite materials industry</subject><subject>Food packaging</subject><subject>Fourier transforms</subject><subject>Glass transition temperature</subject><subject>Heat resistance</subject><subject>Impact strength</subject><subject>Injection molding</subject><subject>Lignin</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Outdoor air quality</subject><subject>Plastics</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Pruning</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Sulfuric acid</subject><subject>Tensile stress</subject><subject>Water absorption</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1PGzEQhleoSCCaI3dLvfSywZ_r3SONUkCKCEJBHFdeZwxGXju1vUi594fjND2UzhxmNHrm49VU1SXBc8Y6fLULbj8SQQmngpxU5xRLVnPW4C__5GfVLKU3XIyLpiHyvPq9HrKy3voXtADnJhcSoHvlg477lJVLyMQworWz74A2EQA9xOkP_qxSBqT8Fi3flZtUtsGjYNDmFWxEd964CbwuREIKPYL1JkQNI_iMCvjDBh3GXUg2Q_panZqyCmZ_40X19HO5WdzWq_XN3eJ6VWsmm1xTbAaOO9hK3HEMg8CCc0wpowoGJhkFI6ClSuJtJ1gjKTWDaUgrWiM7kIxdVN-Pc3cx_Jog5X60SRfZykOYUk_btus6yoks6Lf_0LcwRV-uO1AtE5zgAzU_Ui_KQX-QmKPSxbcwWh08GFvq11JSwYQkbWmojw06hpQimH4X7ajivie4P_yx__RH9gFXc5EC</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Jurado-Contreras, Sofía</creator><creator>Navas-Martos, Francisco J.</creator><creator>García-Ruiz, Ángeles</creator><creator>Rodríguez-Liébana, José A.</creator><creator>La Rubia, M. Dolores</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6375-0587</orcidid><orcidid>https://orcid.org/0000-0001-7982-3576</orcidid><orcidid>https://orcid.org/0000-0002-3950-3559</orcidid><orcidid>https://orcid.org/0000-0001-5820-6616</orcidid></search><sort><creationdate>20231101</creationdate><title>Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites</title><author>Jurado-Contreras, Sofía ; Navas-Martos, Francisco J. ; García-Ruiz, Ángeles ; Rodríguez-Liébana, José A. ; La Rubia, M. Dolores</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-20fb409ed70940eb5054402232aeb3732ef5e82a70d9536722fbf61858f79e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural production</topic><topic>Air pollution</topic><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biomass</topic><topic>Bleaching</topic><topic>Cellulose</topic><topic>Cellulose acetate</topic><topic>Cellulose pulp</topic><topic>Composite materials</topic><topic>Composite materials industry</topic><topic>Food packaging</topic><topic>Fourier transforms</topic><topic>Glass transition temperature</topic><topic>Heat resistance</topic><topic>Impact strength</topic><topic>Injection molding</topic><topic>Lignin</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Outdoor air quality</topic><topic>Plastics</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Pruning</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Sulfuric acid</topic><topic>Tensile stress</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurado-Contreras, Sofía</creatorcontrib><creatorcontrib>Navas-Martos, Francisco J.</creatorcontrib><creatorcontrib>García-Ruiz, Ángeles</creatorcontrib><creatorcontrib>Rodríguez-Liébana, José A.</creatorcontrib><creatorcontrib>La Rubia, M. Dolores</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurado-Contreras, Sofía</au><au>Navas-Martos, Francisco J.</au><au>García-Ruiz, Ángeles</au><au>Rodríguez-Liébana, José A.</au><au>La Rubia, M. Dolores</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites</atitle><jtitle>Polymers</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>4251</spage><pages>4251-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The objective of this work is to improve the mechanical properties of polylactic acid (PLA) by incorporating cellulose nanocrystals (CNC) previously obtained from a cellulose pulp extracted from olive tree pruning (OTP) waste. Composites were manufactured by melt processing and injection moulding to evaluate the effect of the introduction of CNC with conventional manufacturing methods. This OTP-cellulose pulp was subjected to a further purification process by bleaching, thus bringing the cellulose content up to 86.1%wt. This highly purified cellulose was hydrolysed with sulfuric acid to obtain CNCs with an average length of 267 nm and a degradation temperature of 300 °C. The CNCs obtained were used in different percentages (1, 3, and 5%wt.) as reinforcement in the manufacture of PLA-based composites. The effect of incorporating CNC into PLA matrix on the mechanical, water absorption, thermal, structural, and morphological properties was studied. Maximum tensile stress and Young’s modulus improved by 87 and 58%, respectively, by incorporating 3 and 5%wt. CNC. Charpy impact strength increased by 21% with 3%wt. These results were attributed to the good dispersion of CNCs in the matrix, which was corroborated by SEM images. Crystallinity index, glass transition, and melting temperatures were maintained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/polym15214251</doi><orcidid>https://orcid.org/0000-0001-6375-0587</orcidid><orcidid>https://orcid.org/0000-0001-7982-3576</orcidid><orcidid>https://orcid.org/0000-0002-3950-3559</orcidid><orcidid>https://orcid.org/0000-0001-5820-6616</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2023-11, Vol.15 (21), p.4251 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889992417 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Agricultural production Air pollution Analysis Biocompatibility Biomass Bleaching Cellulose Cellulose acetate Cellulose pulp Composite materials Composite materials industry Food packaging Fourier transforms Glass transition temperature Heat resistance Impact strength Injection molding Lignin Mechanical properties Modulus of elasticity Morphology Nanocrystals Outdoor air quality Plastics Polylactic acid Polymers Production methods Pruning Raw materials Renewable resources Sulfuric acid Tensile stress Water absorption |
title | Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obtaining%20Cellulose%20Nanocrystals%20from%20Olive%20Tree%20Pruning%20Waste%20and%20Evaluation%20of%20Their%20Influence%20as%20a%20Reinforcement%20on%20Biocomposites&rft.jtitle=Polymers&rft.au=Jurado-Contreras,%20Sof%C3%ADa&rft.date=2023-11-01&rft.volume=15&rft.issue=21&rft.spage=4251&rft.pages=4251-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15214251&rft_dat=%3Cgale_proqu%3EA772535718%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888354107&rft_id=info:pmid/&rft_galeid=A772535718&rfr_iscdi=true |