How to construct random functions

A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1986-10, Vol.33 (4), p.792-807
Hauptverfasser: GOLDREICH, O, GOLDWASSER, S, MICALI, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 4
container_start_page 792
container_title Journal of the ACM
container_volume 33
creator GOLDREICH, O
GOLDWASSER, S
MICALI, S
description A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bit string, to polynomial-time computable functions ƒ r : {1, … , 2 k } → {1, … , 2 k }. These ƒ r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.
doi_str_mv 10.1145/6490.6503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28899198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28899198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQQIMouK4e_IMKInromkkym-Qoi7rCghcFbyFNU6h0mzVpEf_elF08ehpmePMOj5BLoAsAgfdLoeliiZQfkRkgylJy_DgmM0qpKFEAnJKzlD7zShmVM3K1Dt_FEAoX-jTE0Q1FtH0dtkUz9m5o8_WcnDS2S_7iMOfk_enxbbUuN6_PL6uHTekEg6FstOPZibXlVoBFgZopz5ALLxWyisvKo6stiKaWtmKUq8qhrbSz0luo-Zzc7L27GL5GnwazbZPzXWd7H8ZkmFJag1YZvP0XBEUVFQqkzOjdHnUxpBR9Y3ax3dr4Y4CaqZeZepmpV2avD1qbnO2a3MG16e9BMWAcl_wX5-xnwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808048177</pqid></control><display><type>article</type><title>How to construct random functions</title><source>ACM Digital Library</source><creator>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</creator><creatorcontrib>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</creatorcontrib><description>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bit string, to polynomial-time computable functions ƒ r : {1, … , 2 k } → {1, … , 2 k }. These ƒ r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/6490.6503</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Circuit properties ; Complexity theory ; Construction ; Cryptography ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Oscillators, resonators, synthetizers ; Pseudorandom ; Strings</subject><ispartof>Journal of the ACM, 1986-10, Vol.33 (4), p.792-807</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</citedby><cites>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8212356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDREICH, O</creatorcontrib><creatorcontrib>GOLDWASSER, S</creatorcontrib><creatorcontrib>MICALI, S</creatorcontrib><title>How to construct random functions</title><title>Journal of the ACM</title><description>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bit string, to polynomial-time computable functions ƒ r : {1, … , 2 k } → {1, … , 2 k }. These ƒ r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Complexity theory</subject><subject>Construction</subject><subject>Cryptography</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oscillators, resonators, synthetizers</subject><subject>Pseudorandom</subject><subject>Strings</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQQIMouK4e_IMKInromkkym-Qoi7rCghcFbyFNU6h0mzVpEf_elF08ehpmePMOj5BLoAsAgfdLoeliiZQfkRkgylJy_DgmM0qpKFEAnJKzlD7zShmVM3K1Dt_FEAoX-jTE0Q1FtH0dtkUz9m5o8_WcnDS2S_7iMOfk_enxbbUuN6_PL6uHTekEg6FstOPZibXlVoBFgZopz5ALLxWyisvKo6stiKaWtmKUq8qhrbSz0luo-Zzc7L27GL5GnwazbZPzXWd7H8ZkmFJag1YZvP0XBEUVFQqkzOjdHnUxpBR9Y3ax3dr4Y4CaqZeZepmpV2avD1qbnO2a3MG16e9BMWAcl_wX5-xnwA</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>GOLDREICH, O</creator><creator>GOLDWASSER, S</creator><creator>MICALI, S</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19861001</creationdate><title>How to construct random functions</title><author>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Complexity theory</topic><topic>Construction</topic><topic>Cryptography</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oscillators, resonators, synthetizers</topic><topic>Pseudorandom</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDREICH, O</creatorcontrib><creatorcontrib>GOLDWASSER, S</creatorcontrib><creatorcontrib>MICALI, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDREICH, O</au><au>GOLDWASSER, S</au><au>MICALI, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to construct random functions</atitle><jtitle>Journal of the ACM</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>33</volume><issue>4</issue><spage>792</spage><epage>807</epage><pages>792-807</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bit string, to polynomial-time computable functions ƒ r : {1, … , 2 k } → {1, … , 2 k }. These ƒ r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/6490.6503</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1986-10, Vol.33 (4), p.792-807
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_28899198
source ACM Digital Library
subjects Algorithms
Applied sciences
Circuit properties
Complexity theory
Construction
Cryptography
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Mathematical analysis
Mathematical models
Oscillators, resonators, synthetizers
Pseudorandom
Strings
title How to construct random functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20construct%20random%20functions&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GOLDREICH,%20O&rft.date=1986-10-01&rft.volume=33&rft.issue=4&rft.spage=792&rft.epage=807&rft.pages=792-807&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/6490.6503&rft_dat=%3Cproquest_cross%3E28899198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808048177&rft_id=info:pmid/&rfr_iscdi=true