How to construct random functions
A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs ( g , r ), where g is any one-way function and r is a random k -bi...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 1986-10, Vol.33 (4), p.792-807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 4 |
container_start_page | 792 |
container_title | Journal of the ACM |
container_volume | 33 |
creator | GOLDREICH, O GOLDWASSER, S MICALI, S |
description | A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (
g
,
r
), where
g
is
any
one-way function and
r
is a random
k
-bit string, to polynomial-time computable functions ƒ
r
: {1, … , 2
k
} → {1, … , 2
k
}. These ƒ
r
's cannot be distinguished from
random
functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory. |
doi_str_mv | 10.1145/6490.6503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28899198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28899198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQQIMouK4e_IMKInromkkym-Qoi7rCghcFbyFNU6h0mzVpEf_elF08ehpmePMOj5BLoAsAgfdLoeliiZQfkRkgylJy_DgmM0qpKFEAnJKzlD7zShmVM3K1Dt_FEAoX-jTE0Q1FtH0dtkUz9m5o8_WcnDS2S_7iMOfk_enxbbUuN6_PL6uHTekEg6FstOPZibXlVoBFgZopz5ALLxWyisvKo6stiKaWtmKUq8qhrbSz0luo-Zzc7L27GL5GnwazbZPzXWd7H8ZkmFJag1YZvP0XBEUVFQqkzOjdHnUxpBR9Y3ax3dr4Y4CaqZeZepmpV2avD1qbnO2a3MG16e9BMWAcl_wX5-xnwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808048177</pqid></control><display><type>article</type><title>How to construct random functions</title><source>ACM Digital Library</source><creator>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</creator><creatorcontrib>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</creatorcontrib><description>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (
g
,
r
), where
g
is
any
one-way function and
r
is a random
k
-bit string, to polynomial-time computable functions ƒ
r
: {1, … , 2
k
} → {1, … , 2
k
}. These ƒ
r
's cannot be distinguished from
random
functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/6490.6503</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithms ; Applied sciences ; Circuit properties ; Complexity theory ; Construction ; Cryptography ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Oscillators, resonators, synthetizers ; Pseudorandom ; Strings</subject><ispartof>Journal of the ACM, 1986-10, Vol.33 (4), p.792-807</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</citedby><cites>FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8212356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GOLDREICH, O</creatorcontrib><creatorcontrib>GOLDWASSER, S</creatorcontrib><creatorcontrib>MICALI, S</creatorcontrib><title>How to construct random functions</title><title>Journal of the ACM</title><description>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (
g
,
r
), where
g
is
any
one-way function and
r
is a random
k
-bit string, to polynomial-time computable functions ƒ
r
: {1, … , 2
k
} → {1, … , 2
k
}. These ƒ
r
's cannot be distinguished from
random
functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Complexity theory</subject><subject>Construction</subject><subject>Cryptography</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oscillators, resonators, synthetizers</subject><subject>Pseudorandom</subject><subject>Strings</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQQIMouK4e_IMKInromkkym-Qoi7rCghcFbyFNU6h0mzVpEf_elF08ehpmePMOj5BLoAsAgfdLoeliiZQfkRkgylJy_DgmM0qpKFEAnJKzlD7zShmVM3K1Dt_FEAoX-jTE0Q1FtH0dtkUz9m5o8_WcnDS2S_7iMOfk_enxbbUuN6_PL6uHTekEg6FstOPZibXlVoBFgZopz5ALLxWyisvKo6stiKaWtmKUq8qhrbSz0luo-Zzc7L27GL5GnwazbZPzXWd7H8ZkmFJag1YZvP0XBEUVFQqkzOjdHnUxpBR9Y3ax3dr4Y4CaqZeZepmpV2avD1qbnO2a3MG16e9BMWAcl_wX5-xnwA</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>GOLDREICH, O</creator><creator>GOLDWASSER, S</creator><creator>MICALI, S</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19861001</creationdate><title>How to construct random functions</title><author>GOLDREICH, O ; GOLDWASSER, S ; MICALI, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f9c30025da3a41a545928e2534e7852b37be5cda14fd7ab2038bc5ab9ca7ea1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Complexity theory</topic><topic>Construction</topic><topic>Cryptography</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oscillators, resonators, synthetizers</topic><topic>Pseudorandom</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GOLDREICH, O</creatorcontrib><creatorcontrib>GOLDWASSER, S</creatorcontrib><creatorcontrib>MICALI, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GOLDREICH, O</au><au>GOLDWASSER, S</au><au>MICALI, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to construct random functions</atitle><jtitle>Journal of the ACM</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>33</volume><issue>4</issue><spage>792</spage><epage>807</epage><pages>792-807</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (
g
,
r
), where
g
is
any
one-way function and
r
is a random
k
-bit string, to polynomial-time computable functions ƒ
r
: {1, … , 2
k
} → {1, … , 2
k
}. These ƒ
r
's cannot be distinguished from
random
functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/6490.6503</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1986-10, Vol.33 (4), p.792-807 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28899198 |
source | ACM Digital Library |
subjects | Algorithms Applied sciences Circuit properties Complexity theory Construction Cryptography Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Mathematical analysis Mathematical models Oscillators, resonators, synthetizers Pseudorandom Strings |
title | How to construct random functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20construct%20random%20functions&rft.jtitle=Journal%20of%20the%20ACM&rft.au=GOLDREICH,%20O&rft.date=1986-10-01&rft.volume=33&rft.issue=4&rft.spage=792&rft.epage=807&rft.pages=792-807&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/6490.6503&rft_dat=%3Cproquest_cross%3E28899198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808048177&rft_id=info:pmid/&rfr_iscdi=true |