A general theory for matrix root-clustering in subregions of the complex plane
We consider the general problem of root-clustering of a matrix in the complex plane: Let A \in C^{n \times n} and S \subset C . Find the largest class of S and an algebraic criterion which is necessary and sufficient for \lambda_{i}[A] \in S, i=1,2,..., n . We introduce two types of regions which co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1981-08, Vol.26 (4), p.853-863 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the general problem of root-clustering of a matrix in the complex plane: Let A \in C^{n \times n} and S \subset C . Find the largest class of S and an algebraic criterion which is necessary and sufficient for \lambda_{i}[A] \in S, i=1,2,..., n . We introduce two types of regions which constitute the largest class of S known to date. The criterion is presented both for open regions and closed ones. The results are used to define a design methodology for control systems. Moreover, all classical results are shown to be special cases of the present theory. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1981.1102764 |