A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications

A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2006-07, Vol.128 (3), p.423-434
Hauptverfasser: Menter, F R, Likki, S R, Suzen, Y B, Huang, P G, Volker, S, Langtry, R B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 3
container_start_page 423
container_title Journal of turbomachinery
container_volume 128
creator Menter, F R
Likki, S R
Suzen, Y B
Huang, P G
Volker, S
Langtry, R B
description A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter F R., Langtry, R. B., Likki, S. R., Suzen, Y B., Huang, P G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413-422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.
doi_str_mv 10.1115/1.2184353
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28893592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28893592</sourcerecordid><originalsourceid>FETCH-LOGICAL-p622-8775e1b51d8e03af427d9966e43128387351b450016feed9dc8833f176cc36fc3</originalsourceid><addsrcrecordid>eNqNUM1OhDAY7EET19WDb9CTN1a-fm0p3pD4Q7JGD2i8bbrth2FTASm8v_jzAJ4mmcxMZoaxC0g3AKCuYCPASFR4xFapMXmiUvl2wk5jPKQpICq5YoeCl_04UrBT23fJjY3keT3aLrbfBH-0ngJ_iW33zre9s4G_2rG1-0AxebbjxKvqmtcUJ14u1sht53nV-TlOiyrwYhhC636y4xk7bmyIdP6Ha1bf3dblQ7J9uq_KYpsMWojEZJki2CvwhlK0jRSZz3OtSSIIgyZDBXuplgG6IfK5d8YgNpBp51A3Dtfs8jd2GPvPeWm2-2ijoxBsR_0cd2J5AlUu_iEEIbUA_AI74mQf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28124621</pqid></control><display><type>article</type><title>A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications</title><source>ASME Digital Collection Journals</source><creator>Menter, F R ; Likki, S R ; Suzen, Y B ; Huang, P G ; Volker, S ; Langtry, R B</creator><creatorcontrib>Menter, F R ; Likki, S R ; Suzen, Y B ; Huang, P G ; Volker, S ; Langtry, R B</creatorcontrib><description>A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter F R., Langtry, R. B., Likki, S. R., Suzen, Y B., Huang, P G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413-422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.</description><identifier>ISSN: 0889-504X</identifier><identifier>DOI: 10.1115/1.2184353</identifier><language>eng</language><ispartof>Journal of turbomachinery, 2006-07, Vol.128 (3), p.423-434</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Menter, F R</creatorcontrib><creatorcontrib>Likki, S R</creatorcontrib><creatorcontrib>Suzen, Y B</creatorcontrib><creatorcontrib>Huang, P G</creatorcontrib><creatorcontrib>Volker, S</creatorcontrib><creatorcontrib>Langtry, R B</creatorcontrib><title>A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications</title><title>Journal of turbomachinery</title><description>A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter F R., Langtry, R. B., Likki, S. R., Suzen, Y B., Huang, P G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413-422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.</description><issn>0889-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNUM1OhDAY7EET19WDb9CTN1a-fm0p3pD4Q7JGD2i8bbrth2FTASm8v_jzAJ4mmcxMZoaxC0g3AKCuYCPASFR4xFapMXmiUvl2wk5jPKQpICq5YoeCl_04UrBT23fJjY3keT3aLrbfBH-0ngJ_iW33zre9s4G_2rG1-0AxebbjxKvqmtcUJ14u1sht53nV-TlOiyrwYhhC636y4xk7bmyIdP6Ha1bf3dblQ7J9uq_KYpsMWojEZJki2CvwhlK0jRSZz3OtSSIIgyZDBXuplgG6IfK5d8YgNpBp51A3Dtfs8jd2GPvPeWm2-2ijoxBsR_0cd2J5AlUu_iEEIbUA_AI74mQf</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Menter, F R</creator><creator>Likki, S R</creator><creator>Suzen, Y B</creator><creator>Huang, P G</creator><creator>Volker, S</creator><creator>Langtry, R B</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20060701</creationdate><title>A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications</title><author>Menter, F R ; Likki, S R ; Suzen, Y B ; Huang, P G ; Volker, S ; Langtry, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p622-8775e1b51d8e03af427d9966e43128387351b450016feed9dc8833f176cc36fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menter, F R</creatorcontrib><creatorcontrib>Likki, S R</creatorcontrib><creatorcontrib>Suzen, Y B</creatorcontrib><creatorcontrib>Huang, P G</creatorcontrib><creatorcontrib>Volker, S</creatorcontrib><creatorcontrib>Langtry, R B</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of turbomachinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menter, F R</au><au>Likki, S R</au><au>Suzen, Y B</au><au>Huang, P G</au><au>Volker, S</au><au>Langtry, R B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications</atitle><jtitle>Journal of turbomachinery</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>128</volume><issue>3</issue><spage>423</spage><epage>434</epage><pages>423-434</pages><issn>0889-504X</issn><abstract>A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I of this paper (Menter F R., Langtry, R. B., Likki, S. R., Suzen, Y B., Huang, P G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 413-422) gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation. Part II (this part) details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications, including the drag crisis of a cylinder, separation-induced transition on a circular leading edge, and natural transition on a wind turbine airfoil. Turbomachinery test cases include a highly loaded compressor cascade, a low-pressure turbine blade, a transonic turbine guide vane, a 3D annular compressor cascade, and unsteady transition due to wake impingement. In addition, predictions are shown for an actual industrial application, namely, a GE low-pressure turbine vane. In all cases, good agreement with the experiments could be achieved and the authors believe that the current model is a significant step forward in engineering transition modeling.</abstract><doi>10.1115/1.2184353</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-504X
ispartof Journal of turbomachinery, 2006-07, Vol.128 (3), p.423-434
issn 0889-504X
language eng
recordid cdi_proquest_miscellaneous_28893592
source ASME Digital Collection Journals
title A Correlation-Based Transition Madel Using Local Variables-Part II: Test Cases and Industrial Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Correlation-Based%20Transition%20Madel%20Using%20Local%20Variables-Part%20II:%20Test%20Cases%20and%20Industrial%20Applications&rft.jtitle=Journal%20of%20turbomachinery&rft.au=Menter,%20F%20R&rft.date=2006-07-01&rft.volume=128&rft.issue=3&rft.spage=423&rft.epage=434&rft.pages=423-434&rft.issn=0889-504X&rft_id=info:doi/10.1115/1.2184353&rft_dat=%3Cproquest%3E28893592%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28124621&rft_id=info:pmid/&rfr_iscdi=true