Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites

A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (12), p.e2307492-n/a
Hauptverfasser: Bi, Xue, Song, Kunpeng, Pan, Ye‐Tang, Barreneche, Camila, Vahabi, Henri, He, Jiyu, Yang, Rongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2307492
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Bi, Xue
Song, Kunpeng
Pan, Ye‐Tang
Barreneche, Camila
Vahabi, Henri
He, Jiyu
Yang, Rongjie
description A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate‐2.0 (PANI@Co‐PA‐2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co‐PA‐2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame‐retardant, conductive, and electromagnetic refractory PUA substrate. A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid as templates and dopants. It is used to improve the flame retardant, electromagnetic shielding, and thermal conductivity properties of polyurea (PUA), broadening the application range of PUA.
doi_str_mv 10.1002/smll.202307492
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889246435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889246435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-d799e08f0ce734d70127c517a718d0c20a6cb9a92f961be387c20778b9301e9b3</originalsourceid><addsrcrecordid>eNqFkUtr3DAQx0VJSdI01x6LIJdcdquH17KOYcmruA-67VnI8mziIFuOHiy-5SOUfsR-kmrZdAu59DTD8JvfDPwRekfJnBLCPoTe2jkjjBNRSPYKHdOS8llZMXmw7yk5Qm9CeCCEU1aIQ3TEhSzKUshj9OvGWes2eJVG8CH6ZGLygG8HvOpiwhchQN9YaHEz5clwZ-H3089aT-DxRz2kgD_rwYXxHjwEHN1G-xZfWjDRu17fDRA7g1f3Hdg2L-Mrq_ut4BvEDOoh4q_OTvmgxkvXjy50EcJb9HqtbYDT53qCflxdfl_ezOov17fLi3pmuOBs1gopgVRrYkDwohWEMmEWVGhBq5YYRnRpGqklW8uSNsArkWdCVI3khIJs-Ak633lH7x4ThKj6LhiwVg_gUlCsqiQryoIvMnr2An1wyQ_5O8Wk4LxYiJJkar6jjHcheFir0Xe99pOiRG3TUtu01D6tvPD-WZuaHto9_jeeDMgdsOksTP_RqdWnuv4n_wN7S6V-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345760</pqid></control><display><type>article</type><title>Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bi, Xue ; Song, Kunpeng ; Pan, Ye‐Tang ; Barreneche, Camila ; Vahabi, Henri ; He, Jiyu ; Yang, Rongjie</creator><creatorcontrib>Bi, Xue ; Song, Kunpeng ; Pan, Ye‐Tang ; Barreneche, Camila ; Vahabi, Henri ; He, Jiyu ; Yang, Rongjie</creatorcontrib><description>A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate‐2.0 (PANI@Co‐PA‐2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co‐PA‐2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame‐retardant, conductive, and electromagnetic refractory PUA substrate. A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid as templates and dopants. It is used to improve the flame retardant, electromagnetic shielding, and thermal conductivity properties of polyurea (PUA), broadening the application range of PUA.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307492</identifier><identifier>PMID: 37946679</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cobalt ; Composite materials ; Electromagnetic shielding ; Fire protection ; Fire safety ; flame retardant ; Flame retardants ; Graphene ; Heat conductivity ; Heat release rate ; Heat transfer ; in situ assembly ; metal‐organic framework ; Nanospheres ; Phytic acid ; polyaniline ; Polyanilines ; Polyureas ; Substrates ; Superstructures ; Tensile strength ; Thermal conductivity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307492-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-d799e08f0ce734d70127c517a718d0c20a6cb9a92f961be387c20778b9301e9b3</citedby><cites>FETCH-LOGICAL-c3732-d799e08f0ce734d70127c517a718d0c20a6cb9a92f961be387c20778b9301e9b3</cites><orcidid>0000-0002-2850-5129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307492$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307492$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37946679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Xue</creatorcontrib><creatorcontrib>Song, Kunpeng</creatorcontrib><creatorcontrib>Pan, Ye‐Tang</creatorcontrib><creatorcontrib>Barreneche, Camila</creatorcontrib><creatorcontrib>Vahabi, Henri</creatorcontrib><creatorcontrib>He, Jiyu</creatorcontrib><creatorcontrib>Yang, Rongjie</creatorcontrib><title>Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate‐2.0 (PANI@Co‐PA‐2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co‐PA‐2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame‐retardant, conductive, and electromagnetic refractory PUA substrate. A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid as templates and dopants. It is used to improve the flame retardant, electromagnetic shielding, and thermal conductivity properties of polyurea (PUA), broadening the application range of PUA.</description><subject>Cobalt</subject><subject>Composite materials</subject><subject>Electromagnetic shielding</subject><subject>Fire protection</subject><subject>Fire safety</subject><subject>flame retardant</subject><subject>Flame retardants</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat release rate</subject><subject>Heat transfer</subject><subject>in situ assembly</subject><subject>metal‐organic framework</subject><subject>Nanospheres</subject><subject>Phytic acid</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Polyureas</subject><subject>Substrates</subject><subject>Superstructures</subject><subject>Tensile strength</subject><subject>Thermal conductivity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAQx0VJSdI01x6LIJdcdquH17KOYcmruA-67VnI8mziIFuOHiy-5SOUfsR-kmrZdAu59DTD8JvfDPwRekfJnBLCPoTe2jkjjBNRSPYKHdOS8llZMXmw7yk5Qm9CeCCEU1aIQ3TEhSzKUshj9OvGWes2eJVG8CH6ZGLygG8HvOpiwhchQN9YaHEz5clwZ-H3089aT-DxRz2kgD_rwYXxHjwEHN1G-xZfWjDRu17fDRA7g1f3Hdg2L-Mrq_ut4BvEDOoh4q_OTvmgxkvXjy50EcJb9HqtbYDT53qCflxdfl_ezOov17fLi3pmuOBs1gopgVRrYkDwohWEMmEWVGhBq5YYRnRpGqklW8uSNsArkWdCVI3khIJs-Ak633lH7x4ThKj6LhiwVg_gUlCsqiQryoIvMnr2An1wyQ_5O8Wk4LxYiJJkar6jjHcheFir0Xe99pOiRG3TUtu01D6tvPD-WZuaHto9_jeeDMgdsOksTP_RqdWnuv4n_wN7S6V-</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Bi, Xue</creator><creator>Song, Kunpeng</creator><creator>Pan, Ye‐Tang</creator><creator>Barreneche, Camila</creator><creator>Vahabi, Henri</creator><creator>He, Jiyu</creator><creator>Yang, Rongjie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2850-5129</orcidid></search><sort><creationdate>20240301</creationdate><title>Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites</title><author>Bi, Xue ; Song, Kunpeng ; Pan, Ye‐Tang ; Barreneche, Camila ; Vahabi, Henri ; He, Jiyu ; Yang, Rongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-d799e08f0ce734d70127c517a718d0c20a6cb9a92f961be387c20778b9301e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cobalt</topic><topic>Composite materials</topic><topic>Electromagnetic shielding</topic><topic>Fire protection</topic><topic>Fire safety</topic><topic>flame retardant</topic><topic>Flame retardants</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat release rate</topic><topic>Heat transfer</topic><topic>in situ assembly</topic><topic>metal‐organic framework</topic><topic>Nanospheres</topic><topic>Phytic acid</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Polyureas</topic><topic>Substrates</topic><topic>Superstructures</topic><topic>Tensile strength</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xue</creatorcontrib><creatorcontrib>Song, Kunpeng</creatorcontrib><creatorcontrib>Pan, Ye‐Tang</creatorcontrib><creatorcontrib>Barreneche, Camila</creatorcontrib><creatorcontrib>Vahabi, Henri</creatorcontrib><creatorcontrib>He, Jiyu</creatorcontrib><creatorcontrib>Yang, Rongjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Xue</au><au>Song, Kunpeng</au><au>Pan, Ye‐Tang</au><au>Barreneche, Camila</au><au>Vahabi, Henri</au><au>He, Jiyu</au><au>Yang, Rongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>e2307492</spage><epage>n/a</epage><pages>e2307492-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid (PA) as templates and dopants. It is used to improve the flame retardant, electromagnetic (EMI) shielding, and thermal conductivity properties of polyurea (PUA). By adding 5 wt% polyaniline@cobalt phytate‐2.0 (PANI@Co‐PA‐2.0), the peak of heat release rate and the peak of smoke production rate are reduced by 54.9 and 59.9%, respectively. The peak of CO and CO2 production also decreased by 46.2 and 53.1%, respectively. A decrease in the absorption intensity of aliphatic and aromatic volatiles is also observed. The fire safety of PUA is greatly improved. In addition, PUA/PANI@Co‐PA‐2.0 exhibits an EMI shielding capability of 22.4 dB with the help of reduced graphene oxide, which confirms the possibility of PUA material application in the field of electromagnetic shielding. The 5 wt% filler increases the tensile strength of the PUA matrix to 6.3 MPa, and the composite material obtains good thermal conductivity. This work provides a viable method for the preparation of a flame‐retardant, conductive, and electromagnetic refractory PUA substrate. A dodecahedral superstructure consisting of a single layer of Janus spheres containing ZIF‐67 nanodots is prepared by in situ polymerization, with ZIF‐67 and bio‐based phytic acid as templates and dopants. It is used to improve the flame retardant, electromagnetic shielding, and thermal conductivity properties of polyurea (PUA), broadening the application range of PUA.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37946679</pmid><doi>10.1002/smll.202307492</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2850-5129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307492-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2889246435
source Wiley Online Library Journals Frontfile Complete
subjects Cobalt
Composite materials
Electromagnetic shielding
Fire protection
Fire safety
flame retardant
Flame retardants
Graphene
Heat conductivity
Heat release rate
Heat transfer
in situ assembly
metal‐organic framework
Nanospheres
Phytic acid
polyaniline
Polyanilines
Polyureas
Substrates
Superstructures
Tensile strength
Thermal conductivity
title Hollow Superstructure In Situ Assembled by Single‐Layer Janus Nanospheres toward Electromagnetic Shielding Flame‐Retardant Polyurea Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20Superstructure%20In%20Situ%20Assembled%20by%20Single%E2%80%90Layer%20Janus%20Nanospheres%20toward%20Electromagnetic%20Shielding%20Flame%E2%80%90Retardant%20Polyurea%20Composites&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Bi,%20Xue&rft.date=2024-03-01&rft.volume=20&rft.issue=12&rft.spage=e2307492&rft.epage=n/a&rft.pages=e2307492-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307492&rft_dat=%3Cproquest_cross%3E2889246435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345760&rft_id=info:pmid/37946679&rfr_iscdi=true