Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations
Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with noco...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-11, Vol.63 (22), p.7228-7238 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7238 |
---|---|
container_issue | 22 |
container_start_page | 7228 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Cano-González, Lucia Espinosa-Mendoza, Johan D Matadamas-Martínez, Félix Romero-Velásquez, Ariana Flores-Ramos, Miguel Colorado-Pablo, Luis Fernando Cerbón-Cervantes, Marco Antonio Castillo, Rafael González-Sánchez, Ignacio Yépez-Mulia, Lilián Hernández-Campos, Alicia Aguayo-Ortiz, Rodrigo |
description | Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound
, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC
< 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that
has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity. |
doi_str_mv | 10.1021/acs.jcim.3c01379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889244541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894960937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-272cf51347269922a6ad2b34c5bc11430daa21c1a247e1285a8eeaeda0fc34233</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaRw3957KQi-9rKuv3bWOqZsvMDiQFHJbZrWztox25UqrgHPLP4-cOD30pEE878swDyFfGZ0xytlP0GG21aafCU2ZqNQHMmGFVLkq6cPH97lQ5Qk5DWFLqRCq5J_JSUJlVRVqQp7vRh_1GD3mvyBgm612o-nNE4zGDZnrsgX4BocWnkyf_0ZvHhNzH5tozZDdOrvv09-Rvhk2pjGj8yEbN97F9SY7t3qDvdFgs0uPmF0M6Nf7VGp1tK-p8IV86sAGPDu-U_Ln8uJ-cZ0vV1c3i_NlrgWvxpxXXHcFE7LipVKcQwktb4TURaMZk4K2AJxpBlxWyPi8gDkiYAu000JyIabkx1vvzru_EcNY9yZotBYGdDHUfD5XXMpCsoR-_w_duuiHtF2ilEzXVaJKFH2jtHcheOzqnTc9-H3NaH3QUyc99UFPfdSTIt-OxbHpsf0XePchXgB_Eo-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894960937</pqid></control><display><type>article</type><title>Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations</title><source>ACS Publications</source><source>MEDLINE</source><creator>Cano-González, Lucia ; Espinosa-Mendoza, Johan D ; Matadamas-Martínez, Félix ; Romero-Velásquez, Ariana ; Flores-Ramos, Miguel ; Colorado-Pablo, Luis Fernando ; Cerbón-Cervantes, Marco Antonio ; Castillo, Rafael ; González-Sánchez, Ignacio ; Yépez-Mulia, Lilián ; Hernández-Campos, Alicia ; Aguayo-Ortiz, Rodrigo</creator><creatorcontrib>Cano-González, Lucia ; Espinosa-Mendoza, Johan D ; Matadamas-Martínez, Félix ; Romero-Velásquez, Ariana ; Flores-Ramos, Miguel ; Colorado-Pablo, Luis Fernando ; Cerbón-Cervantes, Marco Antonio ; Castillo, Rafael ; González-Sánchez, Ignacio ; Yépez-Mulia, Lilián ; Hernández-Campos, Alicia ; Aguayo-Ortiz, Rodrigo</creatorcontrib><description>Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound
, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC
< 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that
has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c01379</identifier><identifier>PMID: 37947759</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anticancer properties ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antiproliferatives ; Apoptosis ; Binding sites ; Cancer ; Cell cycle ; Cell Proliferation ; Colchicine ; Crystal structure ; Crystallography ; Drug Screening Assays, Antitumor ; Free energy ; Humans ; Mathematical analysis ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Structure ; Nocodazole - pharmacology ; Optimization ; Polymerization ; Structure-Activity Relationship ; Substitutes ; Tubulin - metabolism ; Tubulin Modulators - chemistry</subject><ispartof>Journal of chemical information and modeling, 2023-11, Vol.63 (22), p.7228-7238</ispartof><rights>Copyright American Chemical Society Nov 27, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-272cf51347269922a6ad2b34c5bc11430daa21c1a247e1285a8eeaeda0fc34233</citedby><cites>FETCH-LOGICAL-c327t-272cf51347269922a6ad2b34c5bc11430daa21c1a247e1285a8eeaeda0fc34233</cites><orcidid>0000-0001-9455-5397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37947759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cano-González, Lucia</creatorcontrib><creatorcontrib>Espinosa-Mendoza, Johan D</creatorcontrib><creatorcontrib>Matadamas-Martínez, Félix</creatorcontrib><creatorcontrib>Romero-Velásquez, Ariana</creatorcontrib><creatorcontrib>Flores-Ramos, Miguel</creatorcontrib><creatorcontrib>Colorado-Pablo, Luis Fernando</creatorcontrib><creatorcontrib>Cerbón-Cervantes, Marco Antonio</creatorcontrib><creatorcontrib>Castillo, Rafael</creatorcontrib><creatorcontrib>González-Sánchez, Ignacio</creatorcontrib><creatorcontrib>Yépez-Mulia, Lilián</creatorcontrib><creatorcontrib>Hernández-Campos, Alicia</creatorcontrib><creatorcontrib>Aguayo-Ortiz, Rodrigo</creatorcontrib><title>Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound
, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC
< 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that
has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.</description><subject>Anticancer properties</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antiproliferatives</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Proliferation</subject><subject>Colchicine</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Free energy</subject><subject>Humans</subject><subject>Mathematical analysis</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Structure</subject><subject>Nocodazole - pharmacology</subject><subject>Optimization</subject><subject>Polymerization</subject><subject>Structure-Activity Relationship</subject><subject>Substitutes</subject><subject>Tubulin - metabolism</subject><subject>Tubulin Modulators - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1rGzEQhkVpaRw3957KQi-9rKuv3bWOqZsvMDiQFHJbZrWztox25UqrgHPLP4-cOD30pEE878swDyFfGZ0xytlP0GG21aafCU2ZqNQHMmGFVLkq6cPH97lQ5Qk5DWFLqRCq5J_JSUJlVRVqQp7vRh_1GD3mvyBgm612o-nNE4zGDZnrsgX4BocWnkyf_0ZvHhNzH5tozZDdOrvv09-Rvhk2pjGj8yEbN97F9SY7t3qDvdFgs0uPmF0M6Nf7VGp1tK-p8IV86sAGPDu-U_Ln8uJ-cZ0vV1c3i_NlrgWvxpxXXHcFE7LipVKcQwktb4TURaMZk4K2AJxpBlxWyPi8gDkiYAu000JyIabkx1vvzru_EcNY9yZotBYGdDHUfD5XXMpCsoR-_w_duuiHtF2ilEzXVaJKFH2jtHcheOzqnTc9-H3NaH3QUyc99UFPfdSTIt-OxbHpsf0XePchXgB_Eo-V</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Cano-González, Lucia</creator><creator>Espinosa-Mendoza, Johan D</creator><creator>Matadamas-Martínez, Félix</creator><creator>Romero-Velásquez, Ariana</creator><creator>Flores-Ramos, Miguel</creator><creator>Colorado-Pablo, Luis Fernando</creator><creator>Cerbón-Cervantes, Marco Antonio</creator><creator>Castillo, Rafael</creator><creator>González-Sánchez, Ignacio</creator><creator>Yépez-Mulia, Lilián</creator><creator>Hernández-Campos, Alicia</creator><creator>Aguayo-Ortiz, Rodrigo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9455-5397</orcidid></search><sort><creationdate>20231127</creationdate><title>Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations</title><author>Cano-González, Lucia ; Espinosa-Mendoza, Johan D ; Matadamas-Martínez, Félix ; Romero-Velásquez, Ariana ; Flores-Ramos, Miguel ; Colorado-Pablo, Luis Fernando ; Cerbón-Cervantes, Marco Antonio ; Castillo, Rafael ; González-Sánchez, Ignacio ; Yépez-Mulia, Lilián ; Hernández-Campos, Alicia ; Aguayo-Ortiz, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-272cf51347269922a6ad2b34c5bc11430daa21c1a247e1285a8eeaeda0fc34233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anticancer properties</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antiproliferatives</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Proliferation</topic><topic>Colchicine</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Free energy</topic><topic>Humans</topic><topic>Mathematical analysis</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Structure</topic><topic>Nocodazole - pharmacology</topic><topic>Optimization</topic><topic>Polymerization</topic><topic>Structure-Activity Relationship</topic><topic>Substitutes</topic><topic>Tubulin - metabolism</topic><topic>Tubulin Modulators - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano-González, Lucia</creatorcontrib><creatorcontrib>Espinosa-Mendoza, Johan D</creatorcontrib><creatorcontrib>Matadamas-Martínez, Félix</creatorcontrib><creatorcontrib>Romero-Velásquez, Ariana</creatorcontrib><creatorcontrib>Flores-Ramos, Miguel</creatorcontrib><creatorcontrib>Colorado-Pablo, Luis Fernando</creatorcontrib><creatorcontrib>Cerbón-Cervantes, Marco Antonio</creatorcontrib><creatorcontrib>Castillo, Rafael</creatorcontrib><creatorcontrib>González-Sánchez, Ignacio</creatorcontrib><creatorcontrib>Yépez-Mulia, Lilián</creatorcontrib><creatorcontrib>Hernández-Campos, Alicia</creatorcontrib><creatorcontrib>Aguayo-Ortiz, Rodrigo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano-González, Lucia</au><au>Espinosa-Mendoza, Johan D</au><au>Matadamas-Martínez, Félix</au><au>Romero-Velásquez, Ariana</au><au>Flores-Ramos, Miguel</au><au>Colorado-Pablo, Luis Fernando</au><au>Cerbón-Cervantes, Marco Antonio</au><au>Castillo, Rafael</au><au>González-Sánchez, Ignacio</au><au>Yépez-Mulia, Lilián</au><au>Hernández-Campos, Alicia</au><au>Aguayo-Ortiz, Rodrigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2023-11-27</date><risdate>2023</risdate><volume>63</volume><issue>22</issue><spage>7228</spage><epage>7238</epage><pages>7228-7238</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines. Despite the significant progress made in identifying new tubulin-targeting anticancer compounds, further modifications are needed to enhance their potency and safety. In this study, we explored the impact of modifying the phenoxy substitution pattern on antiproliferative activity. Alchemical free energy calculations were used to predict the binding free energy difference upon ligand modification and define the most viable path for structure optimization. Based on these calculations, seven compounds were synthesized and evaluated against lung and colon cancer cell lines. Our results showed that compound
, which incorporates an α-naphthyloxy substitution, exhibits the highest antiproliferative activity against both cancer lines (SK-LU-1 and SW620, IC
< 100 nM) and induces morphological changes in the cells associated with mitotic arrest and mitotic catastrophe. Nevertheless, the tubulin polymerization assay showed that
has a lower inhibitory potency than nocodazole. Molecular dynamics simulations suggested that this low antitubulin activity could be associated with the loss of the key H-bond interaction with V236. This study provides insights into the design of novel carbendazim derivatives with anticancer activity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37947759</pmid><doi>10.1021/acs.jcim.3c01379</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9455-5397</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-11, Vol.63 (22), p.7228-7238 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2889244541 |
source | ACS Publications; MEDLINE |
subjects | Anticancer properties Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antiproliferatives Apoptosis Binding sites Cancer Cell cycle Cell Proliferation Colchicine Crystal structure Crystallography Drug Screening Assays, Antitumor Free energy Humans Mathematical analysis Molecular Docking Simulation Molecular dynamics Molecular Structure Nocodazole - pharmacology Optimization Polymerization Structure-Activity Relationship Substitutes Tubulin - metabolism Tubulin Modulators - chemistry |
title | Structure-Based Optimization of Carbendazim-Derived Tubulin Polymerization Inhibitors through Alchemical Free Energy Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Based%20Optimization%20of%20Carbendazim-Derived%20Tubulin%20Polymerization%20Inhibitors%20through%20Alchemical%20Free%20Energy%20Calculations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Cano-Gonz%C3%A1lez,%20Lucia&rft.date=2023-11-27&rft.volume=63&rft.issue=22&rft.spage=7228&rft.epage=7238&rft.pages=7228-7238&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c01379&rft_dat=%3Cproquest_cross%3E2894960937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894960937&rft_id=info:pmid/37947759&rfr_iscdi=true |