Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing
Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an inno...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-02, Vol.13 (4), p.e2302394-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e2302394 |
container_title | Advanced healthcare materials |
container_volume | 13 |
creator | Lee, Jieun Dutta, Sayan Deb Acharya, Rumi Park, Hyeonseo Kim, Hojin Randhawa, Aayushi Patil, Tejal V. Ganguly, Keya Luthfikasari, Rachmi Lim, Ki‐Taek |
description | Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune‐related diseases.
This paper explores the use of conductive materials in tissue engineering and investigates the effects and mechanisms of electrical stimulation on wound healing. The use of 3D‐printed conductive hydrogels, including light‐based and ink‐based, are described for macrophage polarization, angiogenesis, and skin wound‐healing applications. |
doi_str_mv | 10.1002/adhm.202302394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889243730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889243730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-5759aa379aa6b963380bee9f7e8bafe9d947896162586018cdc2ff86e7afc4a73</originalsourceid><addsrcrecordid>eNqFkUFrFDEUx4NYbGl79SgBL152m8lMMom3ZatdoaWlVTyGNzNvtimZyZjMWNZTP4Kf0U9ilq0reDGEJDx--eWFPyGvMzbPGONn0Nx3c854nqYuXpAjnmk-41Lol_tzwQ7JaYwPLA0pMqmyV-QwL7VgQvAjsrkbbTc5--vp5y3GwffRfkean9ObYPsRKod06ftmqsdtfbVpgl-je08X9G7EgY7-EUJDb3E9ORhtv6ZXUAc_3MMa6Y13EOyPVPc9hb6hX_2U1hWCS-QJOWjBRTx93o_Jl48fPi9Xs8vri0_LxeWszsu8mIlSaIDUMICstMxzxSpE3ZaoKmhRN7oolZaZ5EJJlqm6qXnbKokltHUBZX5M3u28Q_DfJoyj6Wys0Tno0U_RcKU0L9JbLKFv_0Ef_BT61J3hmvNCqJJvhfMdlT4aY8DWDMF2EDYmY2abi9nmYva5pAtvnrVT1WGzx_-kkAC9Ax6tw81_dGZxvrr6K_8NBVCa9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922458727</pqid></control><display><type>article</type><title>Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Jieun ; Dutta, Sayan Deb ; Acharya, Rumi ; Park, Hyeonseo ; Kim, Hojin ; Randhawa, Aayushi ; Patil, Tejal V. ; Ganguly, Keya ; Luthfikasari, Rachmi ; Lim, Ki‐Taek</creator><creatorcontrib>Lee, Jieun ; Dutta, Sayan Deb ; Acharya, Rumi ; Park, Hyeonseo ; Kim, Hojin ; Randhawa, Aayushi ; Patil, Tejal V. ; Ganguly, Keya ; Luthfikasari, Rachmi ; Lim, Ki‐Taek</creatorcontrib><description>Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune‐related diseases.
This paper explores the use of conductive materials in tissue engineering and investigates the effects and mechanisms of electrical stimulation on wound healing. The use of 3D‐printed conductive hydrogels, including light‐based and ink‐based, are described for macrophage polarization, angiogenesis, and skin wound‐healing applications.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202302394</identifier><identifier>PMID: 37950552</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Biomedical engineering ; conductive hydrogels ; Electric Conductivity ; electrical stimulation ; Electrical stimuli ; Hydrogels ; Hydrogels - pharmacology ; Immune response ; Immunomodulation ; Macrophages ; Mechanical stimuli ; Polarization ; Skin diseases ; Stimuli ; Three dimensional printing ; Tissue Engineering ; Wound Healing</subject><ispartof>Advanced healthcare materials, 2024-02, Vol.13 (4), p.e2302394-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-5759aa379aa6b963380bee9f7e8bafe9d947896162586018cdc2ff86e7afc4a73</citedby><cites>FETCH-LOGICAL-c3734-5759aa379aa6b963380bee9f7e8bafe9d947896162586018cdc2ff86e7afc4a73</cites><orcidid>0000-0003-2091-788X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202302394$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202302394$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37950552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jieun</creatorcontrib><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Acharya, Rumi</creatorcontrib><creatorcontrib>Park, Hyeonseo</creatorcontrib><creatorcontrib>Kim, Hojin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Patil, Tejal V.</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Luthfikasari, Rachmi</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><title>Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune‐related diseases.
This paper explores the use of conductive materials in tissue engineering and investigates the effects and mechanisms of electrical stimulation on wound healing. The use of 3D‐printed conductive hydrogels, including light‐based and ink‐based, are described for macrophage polarization, angiogenesis, and skin wound‐healing applications.</description><subject>3D printing</subject><subject>Biomedical engineering</subject><subject>conductive hydrogels</subject><subject>Electric Conductivity</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Immune response</subject><subject>Immunomodulation</subject><subject>Macrophages</subject><subject>Mechanical stimuli</subject><subject>Polarization</subject><subject>Skin diseases</subject><subject>Stimuli</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Wound Healing</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrFDEUx4NYbGl79SgBL152m8lMMom3ZatdoaWlVTyGNzNvtimZyZjMWNZTP4Kf0U9ilq0reDGEJDx--eWFPyGvMzbPGONn0Nx3c854nqYuXpAjnmk-41Lol_tzwQ7JaYwPLA0pMqmyV-QwL7VgQvAjsrkbbTc5--vp5y3GwffRfkean9ObYPsRKod06ftmqsdtfbVpgl-je08X9G7EgY7-EUJDb3E9ORhtv6ZXUAc_3MMa6Y13EOyPVPc9hb6hX_2U1hWCS-QJOWjBRTx93o_Jl48fPi9Xs8vri0_LxeWszsu8mIlSaIDUMICstMxzxSpE3ZaoKmhRN7oolZaZ5EJJlqm6qXnbKokltHUBZX5M3u28Q_DfJoyj6Wys0Tno0U_RcKU0L9JbLKFv_0Ef_BT61J3hmvNCqJJvhfMdlT4aY8DWDMF2EDYmY2abi9nmYva5pAtvnrVT1WGzx_-kkAC9Ax6tw81_dGZxvrr6K_8NBVCa9Q</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lee, Jieun</creator><creator>Dutta, Sayan Deb</creator><creator>Acharya, Rumi</creator><creator>Park, Hyeonseo</creator><creator>Kim, Hojin</creator><creator>Randhawa, Aayushi</creator><creator>Patil, Tejal V.</creator><creator>Ganguly, Keya</creator><creator>Luthfikasari, Rachmi</creator><creator>Lim, Ki‐Taek</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid></search><sort><creationdate>20240201</creationdate><title>Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing</title><author>Lee, Jieun ; Dutta, Sayan Deb ; Acharya, Rumi ; Park, Hyeonseo ; Kim, Hojin ; Randhawa, Aayushi ; Patil, Tejal V. ; Ganguly, Keya ; Luthfikasari, Rachmi ; Lim, Ki‐Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-5759aa379aa6b963380bee9f7e8bafe9d947896162586018cdc2ff86e7afc4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Biomedical engineering</topic><topic>conductive hydrogels</topic><topic>Electric Conductivity</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Immune response</topic><topic>Immunomodulation</topic><topic>Macrophages</topic><topic>Mechanical stimuli</topic><topic>Polarization</topic><topic>Skin diseases</topic><topic>Stimuli</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jieun</creatorcontrib><creatorcontrib>Dutta, Sayan Deb</creatorcontrib><creatorcontrib>Acharya, Rumi</creatorcontrib><creatorcontrib>Park, Hyeonseo</creatorcontrib><creatorcontrib>Kim, Hojin</creatorcontrib><creatorcontrib>Randhawa, Aayushi</creatorcontrib><creatorcontrib>Patil, Tejal V.</creatorcontrib><creatorcontrib>Ganguly, Keya</creatorcontrib><creatorcontrib>Luthfikasari, Rachmi</creatorcontrib><creatorcontrib>Lim, Ki‐Taek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jieun</au><au>Dutta, Sayan Deb</au><au>Acharya, Rumi</au><au>Park, Hyeonseo</au><au>Kim, Hojin</au><au>Randhawa, Aayushi</au><au>Patil, Tejal V.</au><au>Ganguly, Keya</au><au>Luthfikasari, Rachmi</au><au>Lim, Ki‐Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>13</volume><issue>4</issue><spage>e2302394</spage><epage>n/a</epage><pages>e2302394-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Conductive hydrogels (CHs) are promising alternatives for electrical stimulation of cells and tissues in biomedical engineering. Wound healing and immunomodulation are complex processes that involve multiple cell types and signaling pathways. 3D printable conductive hydrogels have emerged as an innovative approach to promote wound healing and modulate immune responses. CHs can facilitate electrical and mechanical stimuli, which can be beneficial for altering cellular metabolism and enhancing the efficiency of the delivery of therapeutic molecules. This review summarizes the recent advances in 3D printable conductive hydrogels for wound healing and their effect on macrophage polarization. This report also discusses the properties of various conductive materials that can be used to fabricate hydrogels to stimulate immune responses. Furthermore, this review highlights the challenges and limitations of using 3D printable CHs for future material discovery. Overall, 3D printable conductive hydrogels hold excellent potential for accelerating wound healing and immune responses, which can lead to the development of new therapeutic strategies for skin and immune‐related diseases.
This paper explores the use of conductive materials in tissue engineering and investigates the effects and mechanisms of electrical stimulation on wound healing. The use of 3D‐printed conductive hydrogels, including light‐based and ink‐based, are described for macrophage polarization, angiogenesis, and skin wound‐healing applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37950552</pmid><doi>10.1002/adhm.202302394</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-2091-788X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2024-02, Vol.13 (4), p.e2302394-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889243730 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 3D printing Biomedical engineering conductive hydrogels Electric Conductivity electrical stimulation Electrical stimuli Hydrogels Hydrogels - pharmacology Immune response Immunomodulation Macrophages Mechanical stimuli Polarization Skin diseases Stimuli Three dimensional printing Tissue Engineering Wound Healing |
title | Stimuli‐Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimuli%E2%80%90Responsive%203D%20Printable%20Conductive%20Hydrogel:%20A%20Step%20toward%20Regulating%20Macrophage%20Polarization%20and%20Wound%20Healing&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Lee,%20Jieun&rft.date=2024-02-01&rft.volume=13&rft.issue=4&rft.spage=e2302394&rft.epage=n/a&rft.pages=e2302394-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202302394&rft_dat=%3Cproquest_cross%3E2889243730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922458727&rft_id=info:pmid/37950552&rfr_iscdi=true |