Structure of GPR101–Gs enables identification of ligands with rejuvenating potential

GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2024-04, Vol.20 (4), p.484-492
Hauptverfasser: Yang, Zhao, Wang, Jun-Yan, Yang, Fan, Zhu, Kong-Kai, Wang, Guo-Peng, Guan, Ying, Ning, Shang-Lei, Lu, Yan, Li, Yu, Zhang, Chao, Zheng, Yuan, Zhou, Shu-Hua, Wang, Xin-Wen, Wang, Ming-Wei, Xiao, Peng, Yi, Fan, Zhang, Cheng, Zhang, Peng-Ju, Xu, Fei, Liu, Bao-Hua, Zhang, Hua, Yu, Xiao, Gao, Ning, Sun, Jin-Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue 4
container_start_page 484
container_title Nature chemical biology
container_volume 20
creator Yang, Zhao
Wang, Jun-Yan
Yang, Fan
Zhu, Kong-Kai
Wang, Guo-Peng
Guan, Ying
Ning, Shang-Lei
Lu, Yan
Li, Yu
Zhang, Chao
Zheng, Yuan
Zhou, Shu-Hua
Wang, Xin-Wen
Wang, Ming-Wei
Xiao, Peng
Yi, Fan
Zhang, Cheng
Zhang, Peng-Ju
Xu, Fei
Liu, Bao-Hua
Zhang, Hua
Yu, Xiao
Gao, Ning
Sun, Jin-Peng
description GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14–GPR101–Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101 -deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential. The cryo-electron microscopy structure of the GPR101–Gs complex reveals the mechanism for its constitutive activity and facilitates the screening and identification of GPR101 ligands with rejuvenating potential.
doi_str_mv 10.1038/s41589-023-01456-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889240435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3003349424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-43afb8804e14fc0aa3649a371f060947c3ac56bf88084beac8384692db017a353</originalsourceid><addsrcrecordid>eNp9kM1KAzEYRYMotlZfwIUMuHEzmkx-JrOUolUoKP5tQyZNasp0piYZxZ3v4Bv6JKadWsGFq3yQc--XHAAOETxFEPMzTxDlRQoznEJEKEvZFugjSrOUEFZsb2YKe2DP-xmEmDHEd0EP5wWJUdwHT_fBtSq0TieNSUa3dwiir4_PkU90LctK-8ROdB2ssUoG29RLqrJTWU988mbDc-L0rH2NbLD1NFk0YQnLah_sGFl5fbA-B-Dx8uJheJWOb0bXw_NxqnBOQ0qwNCXnkGhEjIJSYkYKiXNkIIMFyRWWirLSRISTUkvFMY9fyyYlRLnEFA_ASde7cM1Lq30Qc-uVripZ66b1IuO8yAgkK_T4DzprWlfH1wkczWBSkIxEKuso5RrvnTZi4excuneBoFhaF511Ea2LlXXBYuhoXd2Wcz3ZRH40RwB3gI9X9VS7393_1H4Du8SM-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003349424</pqid></control><display><type>article</type><title>Structure of GPR101–Gs enables identification of ligands with rejuvenating potential</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Zhao ; Wang, Jun-Yan ; Yang, Fan ; Zhu, Kong-Kai ; Wang, Guo-Peng ; Guan, Ying ; Ning, Shang-Lei ; Lu, Yan ; Li, Yu ; Zhang, Chao ; Zheng, Yuan ; Zhou, Shu-Hua ; Wang, Xin-Wen ; Wang, Ming-Wei ; Xiao, Peng ; Yi, Fan ; Zhang, Cheng ; Zhang, Peng-Ju ; Xu, Fei ; Liu, Bao-Hua ; Zhang, Hua ; Yu, Xiao ; Gao, Ning ; Sun, Jin-Peng</creator><creatorcontrib>Yang, Zhao ; Wang, Jun-Yan ; Yang, Fan ; Zhu, Kong-Kai ; Wang, Guo-Peng ; Guan, Ying ; Ning, Shang-Lei ; Lu, Yan ; Li, Yu ; Zhang, Chao ; Zheng, Yuan ; Zhou, Shu-Hua ; Wang, Xin-Wen ; Wang, Ming-Wei ; Xiao, Peng ; Yi, Fan ; Zhang, Cheng ; Zhang, Peng-Ju ; Xu, Fei ; Liu, Bao-Hua ; Zhang, Hua ; Yu, Xiao ; Gao, Ning ; Sun, Jin-Peng</creatorcontrib><description>GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14–GPR101–Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101 -deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential. The cryo-electron microscopy structure of the GPR101–Gs complex reveals the mechanism for its constitutive activity and facilitates the screening and identification of GPR101 ligands with rejuvenating potential.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-023-01456-6</identifier><identifier>PMID: 37945893</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/443/319 ; 631/535 ; 631/80/86 ; 631/92/612/194 ; 631/92/613 ; Agonists ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Electron microscopy ; Energy balance ; Functional analysis ; Homeostasis ; Hydrophobicity ; Insulin-like growth factor I ; Insulin-like growth factors ; Ligands ; Microscopy ; Molecular structure ; Receptors ; Transmission electron microscopy</subject><ispartof>Nature chemical biology, 2024-04, Vol.20 (4), p.484-492</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-43afb8804e14fc0aa3649a371f060947c3ac56bf88084beac8384692db017a353</citedby><cites>FETCH-LOGICAL-c375t-43afb8804e14fc0aa3649a371f060947c3ac56bf88084beac8384692db017a353</cites><orcidid>0000-0002-1599-8059 ; 0000-0003-3067-9993 ; 0000-0003-1119-8334 ; 0000-0003-0719-3901 ; 0000-0003-3572-1580 ; 0000-0001-8634-9788 ; 0000-0002-4844-3359 ; 0000-0002-9809-3481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-023-01456-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-023-01456-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37945893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Wang, Jun-Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zhu, Kong-Kai</creatorcontrib><creatorcontrib>Wang, Guo-Peng</creatorcontrib><creatorcontrib>Guan, Ying</creatorcontrib><creatorcontrib>Ning, Shang-Lei</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Zhou, Shu-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Wen</creatorcontrib><creatorcontrib>Wang, Ming-Wei</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Zhang, Peng-Ju</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Liu, Bao-Hua</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Sun, Jin-Peng</creatorcontrib><title>Structure of GPR101–Gs enables identification of ligands with rejuvenating potential</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14–GPR101–Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101 -deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential. The cryo-electron microscopy structure of the GPR101–Gs complex reveals the mechanism for its constitutive activity and facilitates the screening and identification of GPR101 ligands with rejuvenating potential.</description><subject>631/443/319</subject><subject>631/535</subject><subject>631/80/86</subject><subject>631/92/612/194</subject><subject>631/92/613</subject><subject>Agonists</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Electron microscopy</subject><subject>Energy balance</subject><subject>Functional analysis</subject><subject>Homeostasis</subject><subject>Hydrophobicity</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-like growth factors</subject><subject>Ligands</subject><subject>Microscopy</subject><subject>Molecular structure</subject><subject>Receptors</subject><subject>Transmission electron microscopy</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEYRYMotlZfwIUMuHEzmkx-JrOUolUoKP5tQyZNasp0piYZxZ3v4Bv6JKadWsGFq3yQc--XHAAOETxFEPMzTxDlRQoznEJEKEvZFugjSrOUEFZsb2YKe2DP-xmEmDHEd0EP5wWJUdwHT_fBtSq0TieNSUa3dwiir4_PkU90LctK-8ROdB2ssUoG29RLqrJTWU988mbDc-L0rH2NbLD1NFk0YQnLah_sGFl5fbA-B-Dx8uJheJWOb0bXw_NxqnBOQ0qwNCXnkGhEjIJSYkYKiXNkIIMFyRWWirLSRISTUkvFMY9fyyYlRLnEFA_ASde7cM1Lq30Qc-uVripZ66b1IuO8yAgkK_T4DzprWlfH1wkczWBSkIxEKuso5RrvnTZi4excuneBoFhaF511Ea2LlXXBYuhoXd2Wcz3ZRH40RwB3gI9X9VS7393_1H4Du8SM-g</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yang, Zhao</creator><creator>Wang, Jun-Yan</creator><creator>Yang, Fan</creator><creator>Zhu, Kong-Kai</creator><creator>Wang, Guo-Peng</creator><creator>Guan, Ying</creator><creator>Ning, Shang-Lei</creator><creator>Lu, Yan</creator><creator>Li, Yu</creator><creator>Zhang, Chao</creator><creator>Zheng, Yuan</creator><creator>Zhou, Shu-Hua</creator><creator>Wang, Xin-Wen</creator><creator>Wang, Ming-Wei</creator><creator>Xiao, Peng</creator><creator>Yi, Fan</creator><creator>Zhang, Cheng</creator><creator>Zhang, Peng-Ju</creator><creator>Xu, Fei</creator><creator>Liu, Bao-Hua</creator><creator>Zhang, Hua</creator><creator>Yu, Xiao</creator><creator>Gao, Ning</creator><creator>Sun, Jin-Peng</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1599-8059</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid><orcidid>https://orcid.org/0000-0003-1119-8334</orcidid><orcidid>https://orcid.org/0000-0003-0719-3901</orcidid><orcidid>https://orcid.org/0000-0003-3572-1580</orcidid><orcidid>https://orcid.org/0000-0001-8634-9788</orcidid><orcidid>https://orcid.org/0000-0002-4844-3359</orcidid><orcidid>https://orcid.org/0000-0002-9809-3481</orcidid></search><sort><creationdate>20240401</creationdate><title>Structure of GPR101–Gs enables identification of ligands with rejuvenating potential</title><author>Yang, Zhao ; Wang, Jun-Yan ; Yang, Fan ; Zhu, Kong-Kai ; Wang, Guo-Peng ; Guan, Ying ; Ning, Shang-Lei ; Lu, Yan ; Li, Yu ; Zhang, Chao ; Zheng, Yuan ; Zhou, Shu-Hua ; Wang, Xin-Wen ; Wang, Ming-Wei ; Xiao, Peng ; Yi, Fan ; Zhang, Cheng ; Zhang, Peng-Ju ; Xu, Fei ; Liu, Bao-Hua ; Zhang, Hua ; Yu, Xiao ; Gao, Ning ; Sun, Jin-Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-43afb8804e14fc0aa3649a371f060947c3ac56bf88084beac8384692db017a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/443/319</topic><topic>631/535</topic><topic>631/80/86</topic><topic>631/92/612/194</topic><topic>631/92/613</topic><topic>Agonists</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Electron microscopy</topic><topic>Energy balance</topic><topic>Functional analysis</topic><topic>Homeostasis</topic><topic>Hydrophobicity</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-like growth factors</topic><topic>Ligands</topic><topic>Microscopy</topic><topic>Molecular structure</topic><topic>Receptors</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhao</creatorcontrib><creatorcontrib>Wang, Jun-Yan</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Zhu, Kong-Kai</creatorcontrib><creatorcontrib>Wang, Guo-Peng</creatorcontrib><creatorcontrib>Guan, Ying</creatorcontrib><creatorcontrib>Ning, Shang-Lei</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zheng, Yuan</creatorcontrib><creatorcontrib>Zhou, Shu-Hua</creatorcontrib><creatorcontrib>Wang, Xin-Wen</creatorcontrib><creatorcontrib>Wang, Ming-Wei</creatorcontrib><creatorcontrib>Xiao, Peng</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Zhang, Peng-Ju</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Liu, Bao-Hua</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Sun, Jin-Peng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhao</au><au>Wang, Jun-Yan</au><au>Yang, Fan</au><au>Zhu, Kong-Kai</au><au>Wang, Guo-Peng</au><au>Guan, Ying</au><au>Ning, Shang-Lei</au><au>Lu, Yan</au><au>Li, Yu</au><au>Zhang, Chao</au><au>Zheng, Yuan</au><au>Zhou, Shu-Hua</au><au>Wang, Xin-Wen</au><au>Wang, Ming-Wei</au><au>Xiao, Peng</au><au>Yi, Fan</au><au>Zhang, Cheng</au><au>Zhang, Peng-Ju</au><au>Xu, Fei</au><au>Liu, Bao-Hua</au><au>Zhang, Hua</au><au>Yu, Xiao</au><au>Gao, Ning</au><au>Sun, Jin-Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of GPR101–Gs enables identification of ligands with rejuvenating potential</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>484</spage><epage>492</epage><pages>484-492</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14–GPR101–Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101 -deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential. The cryo-electron microscopy structure of the GPR101–Gs complex reveals the mechanism for its constitutive activity and facilitates the screening and identification of GPR101 ligands with rejuvenating potential.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37945893</pmid><doi>10.1038/s41589-023-01456-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1599-8059</orcidid><orcidid>https://orcid.org/0000-0003-3067-9993</orcidid><orcidid>https://orcid.org/0000-0003-1119-8334</orcidid><orcidid>https://orcid.org/0000-0003-0719-3901</orcidid><orcidid>https://orcid.org/0000-0003-3572-1580</orcidid><orcidid>https://orcid.org/0000-0001-8634-9788</orcidid><orcidid>https://orcid.org/0000-0002-4844-3359</orcidid><orcidid>https://orcid.org/0000-0002-9809-3481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2024-04, Vol.20 (4), p.484-492
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_2889240435
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/443/319
631/535
631/80/86
631/92/612/194
631/92/613
Agonists
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Electron microscopy
Energy balance
Functional analysis
Homeostasis
Hydrophobicity
Insulin-like growth factor I
Insulin-like growth factors
Ligands
Microscopy
Molecular structure
Receptors
Transmission electron microscopy
title Structure of GPR101–Gs enables identification of ligands with rejuvenating potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20GPR101%E2%80%93Gs%20enables%20identification%20of%20ligands%20with%20rejuvenating%20potential&rft.jtitle=Nature%20chemical%20biology&rft.au=Yang,%20Zhao&rft.date=2024-04-01&rft.volume=20&rft.issue=4&rft.spage=484&rft.epage=492&rft.pages=484-492&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-023-01456-6&rft_dat=%3Cproquest_cross%3E3003349424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3003349424&rft_id=info:pmid/37945893&rfr_iscdi=true