Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions

This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2024-01, Vol.144, p.145-152
Hauptverfasser: Lan, Jinbao, Zhang, Xian, Wang, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 145
container_title ISA transactions
container_volume 144
creator Lan, Jinbao
Zhang, Xian
Wang, Xin
description This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.
doi_str_mv 10.1016/j.isatra.2023.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889240283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889240283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</originalsourceid><addsrcrecordid>eNo9UctuFDEQtBARWQJ_gJCPXGawPU9zWyJIIiXKJZwtP3qIF894cXuS7F_wyTjawKW7VarqVlcR8oGzmjPef97VHnVOuhZMNDXnNWP8FdnwcZBVgcRrsimIrFg3jKfkLeKOMSY6Ob4hp80gOz507Yb8uQjR6EBTNCtmCk_7uMCSfYEwa-ODzwcaJ-qXDOmhoF-3N3SBNZVxgfwY0y-kjz7f03kN2e8D0OxnqB50OvjlJ3UQ9AG_0C11PoHNdIZ8Hx01GsHRuFA8YIaZYgxr9nHBd-Rk0gHh_Us_Iz--f7s7v6yuby-uzrfXlW3YkCshWsm5ZI20unwz9GayXBgxMeda1zI3CG5k39i-AwuCT62wzpTa9mbspr45I5-Oe_cp_l4Bs5o9WghBLxBXVGIcpWiZGJtCbY9UmyJigkntk5_Lg4oz9ZyF2qljFuo5C8W5Ks4X2ceXC6uZwf0X_TO_-QuCdopk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889240283</pqid></control><display><type>article</type><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</creator><creatorcontrib>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</creatorcontrib><description>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2023.11.001</identifier><identifier>PMID: 37951754</identifier><language>eng</language><publisher>United States</publisher><ispartof>ISA transactions, 2024-01, Vol.144, p.145-152</ispartof><rights>Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</citedby><cites>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</cites><orcidid>0000-0001-7023-7351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37951754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Jinbao</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</description><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UctuFDEQtBARWQJ_gJCPXGawPU9zWyJIIiXKJZwtP3qIF894cXuS7F_wyTjawKW7VarqVlcR8oGzmjPef97VHnVOuhZMNDXnNWP8FdnwcZBVgcRrsimIrFg3jKfkLeKOMSY6Ob4hp80gOz507Yb8uQjR6EBTNCtmCk_7uMCSfYEwa-ODzwcaJ-qXDOmhoF-3N3SBNZVxgfwY0y-kjz7f03kN2e8D0OxnqB50OvjlJ3UQ9AG_0C11PoHNdIZ8Hx01GsHRuFA8YIaZYgxr9nHBd-Rk0gHh_Us_Iz--f7s7v6yuby-uzrfXlW3YkCshWsm5ZI20unwz9GayXBgxMeda1zI3CG5k39i-AwuCT62wzpTa9mbspr45I5-Oe_cp_l4Bs5o9WghBLxBXVGIcpWiZGJtCbY9UmyJigkntk5_Lg4oz9ZyF2qljFuo5C8W5Ks4X2ceXC6uZwf0X_TO_-QuCdopk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lan, Jinbao</creator><creator>Zhang, Xian</creator><creator>Wang, Xin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7023-7351</orcidid></search><sort><creationdate>202401</creationdate><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><author>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Jinbao</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Jinbao</au><au>Zhang, Xian</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2024-01</date><risdate>2024</risdate><volume>144</volume><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</abstract><cop>United States</cop><pmid>37951754</pmid><doi>10.1016/j.isatra.2023.11.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7023-7351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2024-01, Vol.144, p.145-152
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2889240283
source Elsevier ScienceDirect Journals
title Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20robust%20exponential%20stability%20of%20interval%20BAM%20neural%20networks%20with%20multiple%20time-varying%20delays:%20A%20direct%20method%20based%20on%20system%20solutions&rft.jtitle=ISA%20transactions&rft.au=Lan,%20Jinbao&rft.date=2024-01&rft.volume=144&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2023.11.001&rft_dat=%3Cproquest_cross%3E2889240283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889240283&rft_id=info:pmid/37951754&rfr_iscdi=true