Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions
This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2024-01, Vol.144, p.145-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | ISA transactions |
container_volume | 144 |
creator | Lan, Jinbao Zhang, Xian Wang, Xin |
description | This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically. |
doi_str_mv | 10.1016/j.isatra.2023.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889240283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889240283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</originalsourceid><addsrcrecordid>eNo9UctuFDEQtBARWQJ_gJCPXGawPU9zWyJIIiXKJZwtP3qIF894cXuS7F_wyTjawKW7VarqVlcR8oGzmjPef97VHnVOuhZMNDXnNWP8FdnwcZBVgcRrsimIrFg3jKfkLeKOMSY6Ob4hp80gOz507Yb8uQjR6EBTNCtmCk_7uMCSfYEwa-ODzwcaJ-qXDOmhoF-3N3SBNZVxgfwY0y-kjz7f03kN2e8D0OxnqB50OvjlJ3UQ9AG_0C11PoHNdIZ8Hx01GsHRuFA8YIaZYgxr9nHBd-Rk0gHh_Us_Iz--f7s7v6yuby-uzrfXlW3YkCshWsm5ZI20unwz9GayXBgxMeda1zI3CG5k39i-AwuCT62wzpTa9mbspr45I5-Oe_cp_l4Bs5o9WghBLxBXVGIcpWiZGJtCbY9UmyJigkntk5_Lg4oz9ZyF2qljFuo5C8W5Ks4X2ceXC6uZwf0X_TO_-QuCdopk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889240283</pqid></control><display><type>article</type><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</creator><creatorcontrib>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</creatorcontrib><description>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2023.11.001</identifier><identifier>PMID: 37951754</identifier><language>eng</language><publisher>United States</publisher><ispartof>ISA transactions, 2024-01, Vol.144, p.145-152</ispartof><rights>Copyright © 2023 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</citedby><cites>FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</cites><orcidid>0000-0001-7023-7351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37951754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Jinbao</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</description><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UctuFDEQtBARWQJ_gJCPXGawPU9zWyJIIiXKJZwtP3qIF894cXuS7F_wyTjawKW7VarqVlcR8oGzmjPef97VHnVOuhZMNDXnNWP8FdnwcZBVgcRrsimIrFg3jKfkLeKOMSY6Ob4hp80gOz507Yb8uQjR6EBTNCtmCk_7uMCSfYEwa-ODzwcaJ-qXDOmhoF-3N3SBNZVxgfwY0y-kjz7f03kN2e8D0OxnqB50OvjlJ3UQ9AG_0C11PoHNdIZ8Hx01GsHRuFA8YIaZYgxr9nHBd-Rk0gHh_Us_Iz--f7s7v6yuby-uzrfXlW3YkCshWsm5ZI20unwz9GayXBgxMeda1zI3CG5k39i-AwuCT62wzpTa9mbspr45I5-Oe_cp_l4Bs5o9WghBLxBXVGIcpWiZGJtCbY9UmyJigkntk5_Lg4oz9ZyF2qljFuo5C8W5Ks4X2ceXC6uZwf0X_TO_-QuCdopk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lan, Jinbao</creator><creator>Zhang, Xian</creator><creator>Wang, Xin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7023-7351</orcidid></search><sort><creationdate>202401</creationdate><title>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</title><author>Lan, Jinbao ; Zhang, Xian ; Wang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2249119039ca37976bfc12b2f0dd4d40d721b963c65ece21f42cdbf4246b85f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Jinbao</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Jinbao</au><au>Zhang, Xian</au><au>Wang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2024-01</date><risdate>2024</risdate><volume>144</volume><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper analyzes global robust exponential stability of interval bidirectional associative memory (BAM) neural networks with multiple time-varying delays, proposes a direct method based on system solutions, and gives sufficient conditions under which interval BAM neural networks have a unique and globally robustly exponentially stable equilibrium point. This method not only avoids the difficult to set up any Lyapunov-Krasovskii functional, but also derives simpler global robust exponential stability criteria. Compared with the data from other literature, the robust exponential stability criteria obtained in this paper have been presented to have more merits theoretically and numerically.</abstract><cop>United States</cop><pmid>37951754</pmid><doi>10.1016/j.isatra.2023.11.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7023-7351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2024-01, Vol.144, p.145-152 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889240283 |
source | Elsevier ScienceDirect Journals |
title | Global robust exponential stability of interval BAM neural networks with multiple time-varying delays: A direct method based on system solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20robust%20exponential%20stability%20of%20interval%20BAM%20neural%20networks%20with%20multiple%20time-varying%20delays:%20A%20direct%20method%20based%20on%20system%20solutions&rft.jtitle=ISA%20transactions&rft.au=Lan,%20Jinbao&rft.date=2024-01&rft.volume=144&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2023.11.001&rft_dat=%3Cproquest_cross%3E2889240283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889240283&rft_id=info:pmid/37951754&rfr_iscdi=true |