Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes

To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2023-12, Vol.169, p.111180-111180, Article 111180
Hauptverfasser: Nijiati, Mayidili, Guo, Lin, Abulizi, Abudoukeyoumujiang, Fan, Shiyu, Wubuli, Abulikemu, Tuersun, Abudouresuli, Nijiati, Pahatijiang, Xia, Li, Hong, Kunlei, Zou, Xiaoguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111180
container_issue
container_start_page 111180
container_title European journal of radiology
container_volume 169
creator Nijiati, Mayidili
Guo, Lin
Abulizi, Abudoukeyoumujiang
Fan, Shiyu
Wubuli, Abulikemu
Tuersun, Abudouresuli
Nijiati, Pahatijiang
Xia, Li
Hong, Kunlei
Zou, Xiaoguang
description To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.
doi_str_mv 10.1016/j.ejrad.2023.111180
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889239660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889239660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-5a1db98f13d1aae187aac8db75bffde3c527a03cf4f51f55861e6e8c2621ffbf3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EouXxBUjISzYpfjSJs0TlKVViAxI7y7HHlSvHLraz4O9JKTCb2dxzR3MQuqJkQQltbrcL2CZlFowwvqDTCHKE5lS0rGpb1h6jOWkZqchSfMzQWc5bQki97NgpmvG2W3YTNkf-HmCHPagUXNhgFQyeOl0cnM44Wuxj2LgyGheUx6s3nLUKGduY8IT4L7xLYJwuLoZ9uow9JD36mF3GJYEqA4SC41h0HCBfoBOrfIbL332O3h8f3lbP1fr16WV1t640r0mpakVN3wlLuaFKwfSRUlqYvq17aw1wXbNWEa7t0tbU1rVoKDQgNGsYtba3_BzdHHp3KX6OkIscXNbgvQoQxyyZEB3jXdOQKcoPUZ1izgms3CU3qPQlKZF7zXIrfzTLvWZ50DxR178Hxn4A88_8eeXf35Z9Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889239660</pqid></control><display><type>article</type><title>Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nijiati, Mayidili ; Guo, Lin ; Abulizi, Abudoukeyoumujiang ; Fan, Shiyu ; Wubuli, Abulikemu ; Tuersun, Abudouresuli ; Nijiati, Pahatijiang ; Xia, Li ; Hong, Kunlei ; Zou, Xiaoguang</creator><creatorcontrib>Nijiati, Mayidili ; Guo, Lin ; Abulizi, Abudoukeyoumujiang ; Fan, Shiyu ; Wubuli, Abulikemu ; Tuersun, Abudouresuli ; Nijiati, Pahatijiang ; Xia, Li ; Hong, Kunlei ; Zou, Xiaoguang</creatorcontrib><description>To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2023.111180</identifier><identifier>PMID: 37949023</identifier><language>eng</language><publisher>Ireland</publisher><subject>Area Under Curve ; Deep Learning ; Humans ; Retrospective Studies ; Tomography, X-Ray Computed ; Treatment Outcome ; Tuberculosis - diagnostic imaging ; Tuberculosis - drug therapy</subject><ispartof>European journal of radiology, 2023-12, Vol.169, p.111180-111180, Article 111180</ispartof><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-5a1db98f13d1aae187aac8db75bffde3c527a03cf4f51f55861e6e8c2621ffbf3</citedby><cites>FETCH-LOGICAL-c350t-5a1db98f13d1aae187aac8db75bffde3c527a03cf4f51f55861e6e8c2621ffbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37949023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nijiati, Mayidili</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Abulizi, Abudoukeyoumujiang</creatorcontrib><creatorcontrib>Fan, Shiyu</creatorcontrib><creatorcontrib>Wubuli, Abulikemu</creatorcontrib><creatorcontrib>Tuersun, Abudouresuli</creatorcontrib><creatorcontrib>Nijiati, Pahatijiang</creatorcontrib><creatorcontrib>Xia, Li</creatorcontrib><creatorcontrib>Hong, Kunlei</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><title>Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.</description><subject>Area Under Curve</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Retrospective Studies</subject><subject>Tomography, X-Ray Computed</subject><subject>Treatment Outcome</subject><subject>Tuberculosis - diagnostic imaging</subject><subject>Tuberculosis - drug therapy</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EouXxBUjISzYpfjSJs0TlKVViAxI7y7HHlSvHLraz4O9JKTCb2dxzR3MQuqJkQQltbrcL2CZlFowwvqDTCHKE5lS0rGpb1h6jOWkZqchSfMzQWc5bQki97NgpmvG2W3YTNkf-HmCHPagUXNhgFQyeOl0cnM44Wuxj2LgyGheUx6s3nLUKGduY8IT4L7xLYJwuLoZ9uow9JD36mF3GJYEqA4SC41h0HCBfoBOrfIbL332O3h8f3lbP1fr16WV1t640r0mpakVN3wlLuaFKwfSRUlqYvq17aw1wXbNWEa7t0tbU1rVoKDQgNGsYtba3_BzdHHp3KX6OkIscXNbgvQoQxyyZEB3jXdOQKcoPUZ1izgms3CU3qPQlKZF7zXIrfzTLvWZ50DxR178Hxn4A88_8eeXf35Z9Yg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Nijiati, Mayidili</creator><creator>Guo, Lin</creator><creator>Abulizi, Abudoukeyoumujiang</creator><creator>Fan, Shiyu</creator><creator>Wubuli, Abulikemu</creator><creator>Tuersun, Abudouresuli</creator><creator>Nijiati, Pahatijiang</creator><creator>Xia, Li</creator><creator>Hong, Kunlei</creator><creator>Zou, Xiaoguang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202312</creationdate><title>Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes</title><author>Nijiati, Mayidili ; Guo, Lin ; Abulizi, Abudoukeyoumujiang ; Fan, Shiyu ; Wubuli, Abulikemu ; Tuersun, Abudouresuli ; Nijiati, Pahatijiang ; Xia, Li ; Hong, Kunlei ; Zou, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-5a1db98f13d1aae187aac8db75bffde3c527a03cf4f51f55861e6e8c2621ffbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Area Under Curve</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Retrospective Studies</topic><topic>Tomography, X-Ray Computed</topic><topic>Treatment Outcome</topic><topic>Tuberculosis - diagnostic imaging</topic><topic>Tuberculosis - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nijiati, Mayidili</creatorcontrib><creatorcontrib>Guo, Lin</creatorcontrib><creatorcontrib>Abulizi, Abudoukeyoumujiang</creatorcontrib><creatorcontrib>Fan, Shiyu</creatorcontrib><creatorcontrib>Wubuli, Abulikemu</creatorcontrib><creatorcontrib>Tuersun, Abudouresuli</creatorcontrib><creatorcontrib>Nijiati, Pahatijiang</creatorcontrib><creatorcontrib>Xia, Li</creatorcontrib><creatorcontrib>Hong, Kunlei</creatorcontrib><creatorcontrib>Zou, Xiaoguang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nijiati, Mayidili</au><au>Guo, Lin</au><au>Abulizi, Abudoukeyoumujiang</au><au>Fan, Shiyu</au><au>Wubuli, Abulikemu</au><au>Tuersun, Abudouresuli</au><au>Nijiati, Pahatijiang</au><au>Xia, Li</au><au>Hong, Kunlei</au><au>Zou, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2023-12</date><risdate>2023</risdate><volume>169</volume><spage>111180</spage><epage>111180</epage><pages>111180-111180</pages><artnum>111180</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.</abstract><cop>Ireland</cop><pmid>37949023</pmid><doi>10.1016/j.ejrad.2023.111180</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2023-12, Vol.169, p.111180-111180, Article 111180
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_2889239660
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Area Under Curve
Deep Learning
Humans
Retrospective Studies
Tomography, X-Ray Computed
Treatment Outcome
Tuberculosis - diagnostic imaging
Tuberculosis - drug therapy
title Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20radiomics%20of%20longitudinal%20CT%20scans%20for%20early%20prediction%20of%20tuberculosis%20treatment%20outcomes&rft.jtitle=European%20journal%20of%20radiology&rft.au=Nijiati,%20Mayidili&rft.date=2023-12&rft.volume=169&rft.spage=111180&rft.epage=111180&rft.pages=111180-111180&rft.artnum=111180&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2023.111180&rft_dat=%3Cproquest_cross%3E2889239660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889239660&rft_id=info:pmid/37949023&rfr_iscdi=true