Eigenvalues and expansion of regular graphs
The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 1995-09, Vol.42 (5), p.1091-1106 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1106 |
---|---|
container_issue | 5 |
container_start_page | 1091 |
container_title | Journal of the ACM |
container_volume | 42 |
creator | Kahale, Nabil |
description | The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known. |
doi_str_mv | 10.1145/210118.210136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28890146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28890146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFaP3oOICJI6s9nPo5T6AQUvCt6WTbKpKekm7jai_70pKR48eHoM_ObNvEfIOcIMkfFbioCoZjvJxAGZIOcylRl_OyQTAGApZ4jH5CTG9TACBTkhN4t65fynbXoXE-vLxH111se69UlbJcGt-saGZBVs9x5PyVFlm-jO9jolr_eLl_ljunx-eJrfLdMi02KbCollngnpZKk5syVXFCyVsqqsK0SOQueMK2R5qUutgUMhAblVwKpSQ66yKbkafbvQfgx_bc2mjoVrGutd20dDldKATAzg9b8gKlAgM-TZgF78QddtH_wQw6BmlDIJO790hIrQxhhcZbpQb2z4NghmV7EZKzZjxQN_uTe1sbBNFawv6vi7RLWUYjj-A4Gvd44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194224706</pqid></control><display><type>article</type><title>Eigenvalues and expansion of regular graphs</title><source>ACM Digital Library Complete</source><creator>Kahale, Nabil</creator><creatorcontrib>Kahale, Nabil</creatorcontrib><description>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/210118.210136</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Construction ; Eigenvalues ; Exact sciences and technology ; Expanders ; Graphs ; Information retrieval. Graph ; Lower bounds ; Mathematics ; Optimization ; Spectral methods ; Theoretical computing ; Theory</subject><ispartof>Journal of the ACM, 1995-09, Vol.42 (5), p.1091-1106</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Sep 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</citedby><cites>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2977615$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahale, Nabil</creatorcontrib><title>Eigenvalues and expansion of regular graphs</title><title>Journal of the ACM</title><description>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Spectral methods</subject><subject>Theoretical computing</subject><subject>Theory</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFaP3oOICJI6s9nPo5T6AQUvCt6WTbKpKekm7jai_70pKR48eHoM_ObNvEfIOcIMkfFbioCoZjvJxAGZIOcylRl_OyQTAGApZ4jH5CTG9TACBTkhN4t65fynbXoXE-vLxH111se69UlbJcGt-saGZBVs9x5PyVFlm-jO9jolr_eLl_ljunx-eJrfLdMi02KbCollngnpZKk5syVXFCyVsqqsK0SOQueMK2R5qUutgUMhAblVwKpSQ66yKbkafbvQfgx_bc2mjoVrGutd20dDldKATAzg9b8gKlAgM-TZgF78QddtH_wQw6BmlDIJO790hIrQxhhcZbpQb2z4NghmV7EZKzZjxQN_uTe1sbBNFawv6vi7RLWUYjj-A4Gvd44</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Kahale, Nabil</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950901</creationdate><title>Eigenvalues and expansion of regular graphs</title><author>Kahale, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Spectral methods</topic><topic>Theoretical computing</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahale, Nabil</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahale, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues and expansion of regular graphs</atitle><jtitle>Journal of the ACM</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>42</volume><issue>5</issue><spage>1091</spage><epage>1106</epage><pages>1091-1106</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/210118.210136</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1995-09, Vol.42 (5), p.1091-1106 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28890146 |
source | ACM Digital Library Complete |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Asymptotic properties Computer science control theory systems Construction Eigenvalues Exact sciences and technology Expanders Graphs Information retrieval. Graph Lower bounds Mathematics Optimization Spectral methods Theoretical computing Theory |
title | Eigenvalues and expansion of regular graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues%20and%20expansion%20of%20regular%20graphs&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Kahale,%20Nabil&rft.date=1995-09-01&rft.volume=42&rft.issue=5&rft.spage=1091&rft.epage=1106&rft.pages=1091-1106&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/210118.210136&rft_dat=%3Cproquest_cross%3E28890146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194224706&rft_id=info:pmid/&rfr_iscdi=true |