Eigenvalues and expansion of regular graphs

The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 1995-09, Vol.42 (5), p.1091-1106
1. Verfasser: Kahale, Nabil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 5
container_start_page 1091
container_title Journal of the ACM
container_volume 42
creator Kahale, Nabil
description The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.
doi_str_mv 10.1145/210118.210136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28890146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28890146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFaP3oOICJI6s9nPo5T6AQUvCt6WTbKpKekm7jai_70pKR48eHoM_ObNvEfIOcIMkfFbioCoZjvJxAGZIOcylRl_OyQTAGApZ4jH5CTG9TACBTkhN4t65fynbXoXE-vLxH111se69UlbJcGt-saGZBVs9x5PyVFlm-jO9jolr_eLl_ljunx-eJrfLdMi02KbCollngnpZKk5syVXFCyVsqqsK0SOQueMK2R5qUutgUMhAblVwKpSQ66yKbkafbvQfgx_bc2mjoVrGutd20dDldKATAzg9b8gKlAgM-TZgF78QddtH_wQw6BmlDIJO790hIrQxhhcZbpQb2z4NghmV7EZKzZjxQN_uTe1sbBNFawv6vi7RLWUYjj-A4Gvd44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194224706</pqid></control><display><type>article</type><title>Eigenvalues and expansion of regular graphs</title><source>ACM Digital Library Complete</source><creator>Kahale, Nabil</creator><creatorcontrib>Kahale, Nabil</creatorcontrib><description>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/210118.210136</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Asymptotic properties ; Computer science; control theory; systems ; Construction ; Eigenvalues ; Exact sciences and technology ; Expanders ; Graphs ; Information retrieval. Graph ; Lower bounds ; Mathematics ; Optimization ; Spectral methods ; Theoretical computing ; Theory</subject><ispartof>Journal of the ACM, 1995-09, Vol.42 (5), p.1091-1106</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright Association for Computing Machinery Sep 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</citedby><cites>FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2977615$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahale, Nabil</creatorcontrib><title>Eigenvalues and expansion of regular graphs</title><title>Journal of the ACM</title><description>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Expanders</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Spectral methods</subject><subject>Theoretical computing</subject><subject>Theory</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFaP3oOICJI6s9nPo5T6AQUvCt6WTbKpKekm7jai_70pKR48eHoM_ObNvEfIOcIMkfFbioCoZjvJxAGZIOcylRl_OyQTAGApZ4jH5CTG9TACBTkhN4t65fynbXoXE-vLxH111se69UlbJcGt-saGZBVs9x5PyVFlm-jO9jolr_eLl_ljunx-eJrfLdMi02KbCollngnpZKk5syVXFCyVsqqsK0SOQueMK2R5qUutgUMhAblVwKpSQ66yKbkafbvQfgx_bc2mjoVrGutd20dDldKATAzg9b8gKlAgM-TZgF78QddtH_wQw6BmlDIJO790hIrQxhhcZbpQb2z4NghmV7EZKzZjxQN_uTe1sbBNFawv6vi7RLWUYjj-A4Gvd44</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Kahale, Nabil</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950901</creationdate><title>Eigenvalues and expansion of regular graphs</title><author>Kahale, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-671db367e7d954ad5820a277ffaec6b169b45814bd9d99050c7015a804fd90b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Expanders</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Spectral methods</topic><topic>Theoretical computing</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahale, Nabil</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahale, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalues and expansion of regular graphs</atitle><jtitle>Journal of the ACM</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>42</volume><issue>5</issue><spage>1091</spage><epage>1106</epage><pages>1091-1106</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>The spectral method is the best currently known technique to prove lower bounds on expansion. Ramanujan graphs, which have asymptotically optimal second eigenvalue, are the best-known explicit expanders. The spectral method yielded a lower bound of k /4 on the expansion of linear-sized subsets of k -regular Ramanujan graphs. We improve the lower bound on the expansion of Ramanujan graphs to approximately k /2. Moreover, we construct a family of k -regular graphs with asymptotically optimal second eigenvalue and linear expansion equal to k /2. This shows that k /2 is the best bound one can obtain using the second eigenvalue method. We also show an upper bound of roughly 1 + √k - 1 on the average degree of linear-sized induced subgraphs of Ramanujan graphs. This compares positively with the classical bound 2√k - 1. As a byproduct, we obtain improved results on random walks on expanders and construct selection networks (respectively, extrovert graphs) of smaller size (respectively, degree) than was previously known.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/210118.210136</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 1995-09, Vol.42 (5), p.1091-1106
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_28890146
source ACM Digital Library Complete
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Asymptotic properties
Computer science
control theory
systems
Construction
Eigenvalues
Exact sciences and technology
Expanders
Graphs
Information retrieval. Graph
Lower bounds
Mathematics
Optimization
Spectral methods
Theoretical computing
Theory
title Eigenvalues and expansion of regular graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalues%20and%20expansion%20of%20regular%20graphs&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Kahale,%20Nabil&rft.date=1995-09-01&rft.volume=42&rft.issue=5&rft.spage=1091&rft.epage=1106&rft.pages=1091-1106&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/210118.210136&rft_dat=%3Cproquest_cross%3E28890146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194224706&rft_id=info:pmid/&rfr_iscdi=true