Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed
In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300∼1500°C, P = 0.3 MPa, V = 150 m/s, PH2O = 27∼69 kPa, t = 10 h)...
Gespeichert in:
Veröffentlicht in: | Journal of the Society of Materials Science, Japan Japan, 2005, Vol.54(10), pp.1075-1079 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 10 |
container_start_page | 1075 |
container_title | Journal of the Society of Materials Science, Japan |
container_volume | 54 |
creator | YURI, Isao HISAMATSU, Tohru UENO, Shunkichi OHJI, Tatsuki |
description | In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300∼1500°C, P = 0.3 MPa, V = 150 m/s, PH2O = 27∼69 kPa, t = 10 h). After the exposure tests, etch pits, which are assumed to form due to volatilization of SiO2 in the grain boundary phase, were observed at the surface of specimen. The amount of Lu2SiO5 phase at the surface of specimen increased with the increase of gas temperature or water vapor partial pressure. A corresponding decrease in the amount of Lu2Si2O7 phase was observed. Furthermore, by using the average weight loss rate for exposure times of ten hours, the influence of gas temperature and water vapor partial pressure on weight loss rate was examined, and the amount of recession under gas turbine conditions was calculated. Superior environmental resistance was shown relative to Si3N4, SiC and Al2O3. |
doi_str_mv | 10.2472/jsms.54.1075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28888857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28888857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2095-400b3697307780bd2db45b0ca53a441fb2b4bbe89ba7935b593f5125f288bfc83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLQ3f0BOntyazUeTPUqxrVAo2HoOSXa23bJfJruI_94sLcU5zMC8z8zhQegpJTPKJX09hTrMBJ-lRIobNEmVIonkSt2iCREpT0Q6Z_doGkJpCaGUMsWzCdKf4CDu2gYvjsYb14MvQ1-6gNsCbwa6K-lW4jLGbW2HmERyZQJeVu0PNj1el4cj3kPdgTf94AGbJj8vdx1A_ojuClMFmF7mA_pavu8X62SzXX0s3jaJoyQTCSfEsnkmGZFSEZvT3HJhiTOCGc7TwlLLrQWVWSMzJqzIWCFSKgqqlC2cYg_o-fy38-33AKHXdRkcVJVpoB2CjlwsISP4cgadb0PwUOjOl7XxvzolehSpR5FacD2KjPjijJ9Cbw5whY2Pjir4B1_6eHVNXVSqoWF_dyh96A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28888857</pqid></control><display><type>article</type><title>Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YURI, Isao ; HISAMATSU, Tohru ; UENO, Shunkichi ; OHJI, Tatsuki</creator><creatorcontrib>YURI, Isao ; HISAMATSU, Tohru ; UENO, Shunkichi ; OHJI, Tatsuki</creatorcontrib><description>In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300∼1500°C, P = 0.3 MPa, V = 150 m/s, PH2O = 27∼69 kPa, t = 10 h). After the exposure tests, etch pits, which are assumed to form due to volatilization of SiO2 in the grain boundary phase, were observed at the surface of specimen. The amount of Lu2SiO5 phase at the surface of specimen increased with the increase of gas temperature or water vapor partial pressure. A corresponding decrease in the amount of Lu2Si2O7 phase was observed. Furthermore, by using the average weight loss rate for exposure times of ten hours, the influence of gas temperature and water vapor partial pressure on weight loss rate was examined, and the amount of recession under gas turbine conditions was calculated. Superior environmental resistance was shown relative to Si3N4, SiC and Al2O3.</description><identifier>ISSN: 0514-5163</identifier><identifier>EISSN: 1880-7488</identifier><identifier>DOI: 10.2472/jsms.54.1075</identifier><language>eng ; jpn</language><publisher>The Society of Materials Science, Japan</publisher><subject>Ceramics ; Environmental barrier coating ; Gas turbine ; High temperature and high speed ; Recession characteristics</subject><ispartof>Journal of the Society of Materials Science, Japan, 2005, Vol.54(10), pp.1075-1079</ispartof><rights>2005 by The Society of Materials Science, Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2095-400b3697307780bd2db45b0ca53a441fb2b4bbe89ba7935b593f5125f288bfc83</citedby><cites>FETCH-LOGICAL-c2095-400b3697307780bd2db45b0ca53a441fb2b4bbe89ba7935b593f5125f288bfc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>YURI, Isao</creatorcontrib><creatorcontrib>HISAMATSU, Tohru</creatorcontrib><creatorcontrib>UENO, Shunkichi</creatorcontrib><creatorcontrib>OHJI, Tatsuki</creatorcontrib><title>Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed</title><title>Journal of the Society of Materials Science, Japan</title><addtitle>J. Soc. Mat. Sci., Japan</addtitle><description>In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300∼1500°C, P = 0.3 MPa, V = 150 m/s, PH2O = 27∼69 kPa, t = 10 h). After the exposure tests, etch pits, which are assumed to form due to volatilization of SiO2 in the grain boundary phase, were observed at the surface of specimen. The amount of Lu2SiO5 phase at the surface of specimen increased with the increase of gas temperature or water vapor partial pressure. A corresponding decrease in the amount of Lu2Si2O7 phase was observed. Furthermore, by using the average weight loss rate for exposure times of ten hours, the influence of gas temperature and water vapor partial pressure on weight loss rate was examined, and the amount of recession under gas turbine conditions was calculated. Superior environmental resistance was shown relative to Si3N4, SiC and Al2O3.</description><subject>Ceramics</subject><subject>Environmental barrier coating</subject><subject>Gas turbine</subject><subject>High temperature and high speed</subject><subject>Recession characteristics</subject><issn>0514-5163</issn><issn>1880-7488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWLQ3f0BOntyazUeTPUqxrVAo2HoOSXa23bJfJruI_94sLcU5zMC8z8zhQegpJTPKJX09hTrMBJ-lRIobNEmVIonkSt2iCREpT0Q6Z_doGkJpCaGUMsWzCdKf4CDu2gYvjsYb14MvQ1-6gNsCbwa6K-lW4jLGbW2HmERyZQJeVu0PNj1el4cj3kPdgTf94AGbJj8vdx1A_ojuClMFmF7mA_pavu8X62SzXX0s3jaJoyQTCSfEsnkmGZFSEZvT3HJhiTOCGc7TwlLLrQWVWSMzJqzIWCFSKgqqlC2cYg_o-fy38-33AKHXdRkcVJVpoB2CjlwsISP4cgadb0PwUOjOl7XxvzolehSpR5FacD2KjPjijJ9Cbw5whY2Pjir4B1_6eHVNXVSqoWF_dyh96A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>YURI, Isao</creator><creator>HISAMATSU, Tohru</creator><creator>UENO, Shunkichi</creator><creator>OHJI, Tatsuki</creator><general>The Society of Materials Science, Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>2005</creationdate><title>Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed</title><author>YURI, Isao ; HISAMATSU, Tohru ; UENO, Shunkichi ; OHJI, Tatsuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2095-400b3697307780bd2db45b0ca53a441fb2b4bbe89ba7935b593f5125f288bfc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2005</creationdate><topic>Ceramics</topic><topic>Environmental barrier coating</topic><topic>Gas turbine</topic><topic>High temperature and high speed</topic><topic>Recession characteristics</topic><toplevel>online_resources</toplevel><creatorcontrib>YURI, Isao</creatorcontrib><creatorcontrib>HISAMATSU, Tohru</creatorcontrib><creatorcontrib>UENO, Shunkichi</creatorcontrib><creatorcontrib>OHJI, Tatsuki</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Society of Materials Science, Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YURI, Isao</au><au>HISAMATSU, Tohru</au><au>UENO, Shunkichi</au><au>OHJI, Tatsuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed</atitle><jtitle>Journal of the Society of Materials Science, Japan</jtitle><addtitle>J. Soc. Mat. Sci., Japan</addtitle><date>2005</date><risdate>2005</risdate><volume>54</volume><issue>10</issue><spage>1075</spage><epage>1079</epage><pages>1075-1079</pages><issn>0514-5163</issn><eissn>1880-7488</eissn><abstract>In order to understand recession behavior and the amount of recession of Lu2Si2O7 in the combustion gas flow, sintered Lu2Si2O7 specimens were manufactured by hot pressing and exposed under various combustion gas flow conditions (T = 1300∼1500°C, P = 0.3 MPa, V = 150 m/s, PH2O = 27∼69 kPa, t = 10 h). After the exposure tests, etch pits, which are assumed to form due to volatilization of SiO2 in the grain boundary phase, were observed at the surface of specimen. The amount of Lu2SiO5 phase at the surface of specimen increased with the increase of gas temperature or water vapor partial pressure. A corresponding decrease in the amount of Lu2Si2O7 phase was observed. Furthermore, by using the average weight loss rate for exposure times of ten hours, the influence of gas temperature and water vapor partial pressure on weight loss rate was examined, and the amount of recession under gas turbine conditions was calculated. Superior environmental resistance was shown relative to Si3N4, SiC and Al2O3.</abstract><pub>The Society of Materials Science, Japan</pub><doi>10.2472/jsms.54.1075</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0514-5163 |
ispartof | Journal of the Society of Materials Science, Japan, 2005, Vol.54(10), pp.1075-1079 |
issn | 0514-5163 1880-7488 |
language | eng ; jpn |
recordid | cdi_proquest_miscellaneous_28888857 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Ceramics Environmental barrier coating Gas turbine High temperature and high speed Recession characteristics |
title | Recession Characteristics of Lu2Si2O7 in Combustion Gas Flow at High Temperature and High Speed |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recession%20Characteristics%20of%20Lu2Si2O7%20in%20Combustion%20Gas%20Flow%20at%20High%20Temperature%20and%20High%20Speed&rft.jtitle=Journal%20of%20the%20Society%20of%20Materials%20Science,%20Japan&rft.au=YURI,%20Isao&rft.date=2005&rft.volume=54&rft.issue=10&rft.spage=1075&rft.epage=1079&rft.pages=1075-1079&rft.issn=0514-5163&rft.eissn=1880-7488&rft_id=info:doi/10.2472/jsms.54.1075&rft_dat=%3Cproquest_cross%3E28888857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28888857&rft_id=info:pmid/&rfr_iscdi=true |