Continuous profiling
This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, share...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computer systems 1997-11, Vol.15 (4), p.357-390 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 4 |
container_start_page | 357 |
container_title | ACM transactions on computer systems |
container_volume | 15 |
creator | Anderson, Jennifer M Berc, Lance M Dean, Jeffrey Ghemawat, Sanjay Henzinger, Monika R Leung, Shun-Tak A Sites, Richard L Vandevoorde, Mark T Waldspurger, Carl A Weihl, William E |
description | This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28887760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28887760</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_288877603</originalsourceid><addsrcrecordid>eNpjYeA0MDc20TUyMDfkYOAqLs4yMDAwNjY24mQQcc7PK8nMK80vLVYoKMpPy8zJzEvnYWBNS8wpTuWF0twMam6uIc4eukAVhaWpxSXxuZnFyak5OYl5qUCN8UYWFhbm5mYGxkQrBACkwyvD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28887760</pqid></control><display><type>article</type><title>Continuous profiling</title><source>ACM Digital Library Complete</source><creator>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</creator><creatorcontrib>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</creatorcontrib><description>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</description><identifier>ISSN: 0734-2071</identifier><language>eng</language><ispartof>ACM transactions on computer systems, 1997-11, Vol.15 (4), p.357-390</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Anderson, Jennifer M</creatorcontrib><creatorcontrib>Berc, Lance M</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Henzinger, Monika R</creatorcontrib><creatorcontrib>Leung, Shun-Tak A</creatorcontrib><creatorcontrib>Sites, Richard L</creatorcontrib><creatorcontrib>Vandevoorde, Mark T</creatorcontrib><creatorcontrib>Waldspurger, Carl A</creatorcontrib><creatorcontrib>Weihl, William E</creatorcontrib><title>Continuous profiling</title><title>ACM transactions on computer systems</title><description>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</description><issn>0734-2071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDc20TUyMDfkYOAqLs4yMDAwNjY24mQQcc7PK8nMK80vLVYoKMpPy8zJzEvnYWBNS8wpTuWF0twMam6uIc4eukAVhaWpxSXxuZnFyak5OYl5qUCN8UYWFhbm5mYGxkQrBACkwyvD</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Anderson, Jennifer M</creator><creator>Berc, Lance M</creator><creator>Dean, Jeffrey</creator><creator>Ghemawat, Sanjay</creator><creator>Henzinger, Monika R</creator><creator>Leung, Shun-Tak A</creator><creator>Sites, Richard L</creator><creator>Vandevoorde, Mark T</creator><creator>Waldspurger, Carl A</creator><creator>Weihl, William E</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971101</creationdate><title>Continuous profiling</title><author>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_288877603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Jennifer M</creatorcontrib><creatorcontrib>Berc, Lance M</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Henzinger, Monika R</creatorcontrib><creatorcontrib>Leung, Shun-Tak A</creatorcontrib><creatorcontrib>Sites, Richard L</creatorcontrib><creatorcontrib>Vandevoorde, Mark T</creatorcontrib><creatorcontrib>Waldspurger, Carl A</creatorcontrib><creatorcontrib>Weihl, William E</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on computer systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Jennifer M</au><au>Berc, Lance M</au><au>Dean, Jeffrey</au><au>Ghemawat, Sanjay</au><au>Henzinger, Monika R</au><au>Leung, Shun-Tak A</au><au>Sites, Richard L</au><au>Vandevoorde, Mark T</au><au>Waldspurger, Carl A</au><au>Weihl, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous profiling</atitle><jtitle>ACM transactions on computer systems</jtitle><date>1997-11-01</date><risdate>1997</risdate><volume>15</volume><issue>4</issue><spage>357</spage><epage>390</epage><pages>357-390</pages><issn>0734-2071</issn><abstract>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2071 |
ispartof | ACM transactions on computer systems, 1997-11, Vol.15 (4), p.357-390 |
issn | 0734-2071 |
language | eng |
recordid | cdi_proquest_miscellaneous_28887760 |
source | ACM Digital Library Complete |
title | Continuous profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20profiling&rft.jtitle=ACM%20transactions%20on%20computer%20systems&rft.au=Anderson,%20Jennifer%20M&rft.date=1997-11-01&rft.volume=15&rft.issue=4&rft.spage=357&rft.epage=390&rft.pages=357-390&rft.issn=0734-2071&rft_id=info:doi/&rft_dat=%3Cproquest%3E28887760%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28887760&rft_id=info:pmid/&rfr_iscdi=true |