Continuous profiling

This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, share...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computer systems 1997-11, Vol.15 (4), p.357-390
Hauptverfasser: Anderson, Jennifer M, Berc, Lance M, Dean, Jeffrey, Ghemawat, Sanjay, Henzinger, Monika R, Leung, Shun-Tak A, Sites, Richard L, Vandevoorde, Mark T, Waldspurger, Carl A, Weihl, William E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 4
container_start_page 357
container_title ACM transactions on computer systems
container_volume 15
creator Anderson, Jennifer M
Berc, Lance M
Dean, Jeffrey
Ghemawat, Sanjay
Henzinger, Monika R
Leung, Shun-Tak A
Sites, Richard L
Vandevoorde, Mark T
Waldspurger, Carl A
Weihl, William E
description This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28887760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28887760</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_288877603</originalsourceid><addsrcrecordid>eNpjYeA0MDc20TUyMDfkYOAqLs4yMDAwNjY24mQQcc7PK8nMK80vLVYoKMpPy8zJzEvnYWBNS8wpTuWF0twMam6uIc4eukAVhaWpxSXxuZnFyak5OYl5qUCN8UYWFhbm5mYGxkQrBACkwyvD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28887760</pqid></control><display><type>article</type><title>Continuous profiling</title><source>ACM Digital Library Complete</source><creator>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</creator><creatorcontrib>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</creatorcontrib><description>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</description><identifier>ISSN: 0734-2071</identifier><language>eng</language><ispartof>ACM transactions on computer systems, 1997-11, Vol.15 (4), p.357-390</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Anderson, Jennifer M</creatorcontrib><creatorcontrib>Berc, Lance M</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Henzinger, Monika R</creatorcontrib><creatorcontrib>Leung, Shun-Tak A</creatorcontrib><creatorcontrib>Sites, Richard L</creatorcontrib><creatorcontrib>Vandevoorde, Mark T</creatorcontrib><creatorcontrib>Waldspurger, Carl A</creatorcontrib><creatorcontrib>Weihl, William E</creatorcontrib><title>Continuous profiling</title><title>ACM transactions on computer systems</title><description>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</description><issn>0734-2071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDc20TUyMDfkYOAqLs4yMDAwNjY24mQQcc7PK8nMK80vLVYoKMpPy8zJzEvnYWBNS8wpTuWF0twMam6uIc4eukAVhaWpxSXxuZnFyak5OYl5qUCN8UYWFhbm5mYGxkQrBACkwyvD</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Anderson, Jennifer M</creator><creator>Berc, Lance M</creator><creator>Dean, Jeffrey</creator><creator>Ghemawat, Sanjay</creator><creator>Henzinger, Monika R</creator><creator>Leung, Shun-Tak A</creator><creator>Sites, Richard L</creator><creator>Vandevoorde, Mark T</creator><creator>Waldspurger, Carl A</creator><creator>Weihl, William E</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19971101</creationdate><title>Continuous profiling</title><author>Anderson, Jennifer M ; Berc, Lance M ; Dean, Jeffrey ; Ghemawat, Sanjay ; Henzinger, Monika R ; Leung, Shun-Tak A ; Sites, Richard L ; Vandevoorde, Mark T ; Waldspurger, Carl A ; Weihl, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_288877603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Jennifer M</creatorcontrib><creatorcontrib>Berc, Lance M</creatorcontrib><creatorcontrib>Dean, Jeffrey</creatorcontrib><creatorcontrib>Ghemawat, Sanjay</creatorcontrib><creatorcontrib>Henzinger, Monika R</creatorcontrib><creatorcontrib>Leung, Shun-Tak A</creatorcontrib><creatorcontrib>Sites, Richard L</creatorcontrib><creatorcontrib>Vandevoorde, Mark T</creatorcontrib><creatorcontrib>Waldspurger, Carl A</creatorcontrib><creatorcontrib>Weihl, William E</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on computer systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Jennifer M</au><au>Berc, Lance M</au><au>Dean, Jeffrey</au><au>Ghemawat, Sanjay</au><au>Henzinger, Monika R</au><au>Leung, Shun-Tak A</au><au>Sites, Richard L</au><au>Vandevoorde, Mark T</au><au>Waldspurger, Carl A</au><au>Weihl, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous profiling</atitle><jtitle>ACM transactions on computer systems</jtitle><date>1997-11-01</date><risdate>1997</risdate><volume>15</volume><issue>4</issue><spage>357</spage><epage>390</epage><pages>357-390</pages><issn>0734-2071</issn><abstract>This article describes the Digital Continuous Profiling Infrastructure, a sampling-based profiling system designed to run continuously on production systems. The system supports multiprocessors, works on unmodified executables, and collects profiles for entire systems, including user programs, shared libraries, and the operating system kernel. Samples are collected at a high rate (over 5200 samples/sec. per 333MHz processor), yet with low overhead (1 - 3% slowdown for most workloads). Analysis tools supplied with the profiling system use the sample data to produce a precise and accurate accounting, down to the level of pipeline stalls incurred by individual instructions, of where time is bring spent. When instructions incur stalls, the tools identify possible reasons, such as cache misses, branch mispredictions, and functional unit contention. The fine-grained instruction-level analysis guides users and automated optimizers to the causes of performance problems and provides important insights for fixing them.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0734-2071
ispartof ACM transactions on computer systems, 1997-11, Vol.15 (4), p.357-390
issn 0734-2071
language eng
recordid cdi_proquest_miscellaneous_28887760
source ACM Digital Library Complete
title Continuous profiling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20profiling&rft.jtitle=ACM%20transactions%20on%20computer%20systems&rft.au=Anderson,%20Jennifer%20M&rft.date=1997-11-01&rft.volume=15&rft.issue=4&rft.spage=357&rft.epage=390&rft.pages=357-390&rft.issn=0734-2071&rft_id=info:doi/&rft_dat=%3Cproquest%3E28887760%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28887760&rft_id=info:pmid/&rfr_iscdi=true