An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints

With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference‐based (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical statistics : the journal of the pharmaceutical industry 2024-03, Vol.23 (2), p.219-241
Hauptverfasser: García‐Hernandez, Alberto, Pérez, Teresa, Carmen Pardo, María, Rizopoulos, Dimitris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 219
container_title Pharmaceutical statistics : the journal of the pharmaceutical industry
container_volume 23
creator García‐Hernandez, Alberto
Pérez, Teresa
Carmen Pardo, María
Rizopoulos, Dimitris
description With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference‐based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness–death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation—a known phenomenon associated with Rubin's variance equation.
doi_str_mv 10.1002/pst.2348
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888035911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938234392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3108-404ae8f497abb7624abb24f5ec384e13bd54f891c7e697e35eb7eefd6e31b47d3</originalsourceid><addsrcrecordid>eNp1kdFK3jAUx8NQpnODPYEEvNlNNWnSNrkUcZvwgYLuOqTNKctHmtQmnXgn-AKCb-iTLP10CgNvcsLJ7_wI54_QV0oOKSHl0RjTYcm4-IB2acVkQWtabr3eCd9Bn2JcE0IbIauPaIc1kpOaiF10f-yxdc5DjE93jwZ0-o2H2SUbk06Ah2DA4RSwHUYHA_iEcyNprM16jmnT0N7gCXqYwHfwdPfQ6ghmGZizwgaPb2yWJjssjynkA_4sc-DNGKxP8TPa7rWL8OWl7qFf30-vTn4Wq_MfZyfHq6JjlIiCE65B9Fw2um2buuS5lLyvoGOCA2WtqXgvJO0aqGUDrIK2AehNDYy2vDFsD3179o5TuJ4hJjXY2IFz2kOYoyqFEIRVktKMHvyHrsM8-fw7VUom8q6ZLN-E3RRizDtQ42QHPd0qStQSjMrBqCWYjO6_COd2APMK_ksiA8UzcGMd3L4rUheXVxvhXxhsnhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938234392</pqid></control><display><type>article</type><title>An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>García‐Hernandez, Alberto ; Pérez, Teresa ; Carmen Pardo, María ; Rizopoulos, Dimitris</creator><creatorcontrib>García‐Hernandez, Alberto ; Pérez, Teresa ; Carmen Pardo, María ; Rizopoulos, Dimitris</creatorcontrib><description>With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference‐based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness–death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation—a known phenomenon associated with Rubin's variance equation.</description><identifier>ISSN: 1539-1604</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2348</identifier><identifier>PMID: 37940608</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Humans ; Probability</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2024-03, Vol.23 (2), p.219-241</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3108-404ae8f497abb7624abb24f5ec384e13bd54f891c7e697e35eb7eefd6e31b47d3</cites><orcidid>0000-0001-5265-8160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpst.2348$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpst.2348$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940608$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García‐Hernandez, Alberto</creatorcontrib><creatorcontrib>Pérez, Teresa</creatorcontrib><creatorcontrib>Carmen Pardo, María</creatorcontrib><creatorcontrib>Rizopoulos, Dimitris</creatorcontrib><title>An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference‐based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness–death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation—a known phenomenon associated with Rubin's variance equation.</description><subject>Humans</subject><subject>Probability</subject><issn>1539-1604</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdFK3jAUx8NQpnODPYEEvNlNNWnSNrkUcZvwgYLuOqTNKctHmtQmnXgn-AKCb-iTLP10CgNvcsLJ7_wI54_QV0oOKSHl0RjTYcm4-IB2acVkQWtabr3eCd9Bn2JcE0IbIauPaIc1kpOaiF10f-yxdc5DjE93jwZ0-o2H2SUbk06Ah2DA4RSwHUYHA_iEcyNprM16jmnT0N7gCXqYwHfwdPfQ6ghmGZizwgaPb2yWJjssjynkA_4sc-DNGKxP8TPa7rWL8OWl7qFf30-vTn4Wq_MfZyfHq6JjlIiCE65B9Fw2um2buuS5lLyvoGOCA2WtqXgvJO0aqGUDrIK2AehNDYy2vDFsD3179o5TuJ4hJjXY2IFz2kOYoyqFEIRVktKMHvyHrsM8-fw7VUom8q6ZLN-E3RRizDtQ42QHPd0qStQSjMrBqCWYjO6_COd2APMK_ksiA8UzcGMd3L4rUheXVxvhXxhsnhc</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>García‐Hernandez, Alberto</creator><creator>Pérez, Teresa</creator><creator>Carmen Pardo, María</creator><creator>Rizopoulos, Dimitris</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5265-8160</orcidid></search><sort><creationdate>202403</creationdate><title>An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints</title><author>García‐Hernandez, Alberto ; Pérez, Teresa ; Carmen Pardo, María ; Rizopoulos, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3108-404ae8f497abb7624abb24f5ec384e13bd54f891c7e697e35eb7eefd6e31b47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Humans</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Hernandez, Alberto</creatorcontrib><creatorcontrib>Pérez, Teresa</creatorcontrib><creatorcontrib>Carmen Pardo, María</creatorcontrib><creatorcontrib>Rizopoulos, Dimitris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Hernandez, Alberto</au><au>Pérez, Teresa</au><au>Carmen Pardo, María</au><au>Rizopoulos, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2024-03</date><risdate>2024</risdate><volume>23</volume><issue>2</issue><spage>219</spage><epage>241</epage><pages>219-241</pages><issn>1539-1604</issn><eissn>1539-1612</eissn><abstract>With a treatment policy strategy, therapies are evaluated regardless of the disturbance caused by intercurrent events (ICEs). Implementing this estimand is challenging if subjects are not followed up after the ICE. This circumstance can be dealt with using delta adjustment (DA) or reference‐based (RB) imputation. In the survival field, DA and RB imputation have been researched so far using multiple imputation (MI). Here, we present a fully analytical solution. We use the illness–death multistate model with the following transitions: (a) from the initial state to the event of interest, (b) from the initial state to the ICE, and (c) from the ICE to the event. We estimate the intensity function of transitions (a) and (b) using flexible parametric survival models. Transition (c) is assumed unobserved but identifiable using DA or RB imputation assumptions. Various rules have been considered: no ICE effect, DA under proportional hazards (PH) or additive hazards (AH), jump to reference (J2R), and (either PH or AH) copy increment from reference. We obtain the marginal survival curve of interest by calculating, via numerical integration, the probability of transitioning from the initial state to the event of interest regardless of having passed or not by the ICE state. We use the delta method to obtain standard errors (SEs). Finally, we quantify the performance of the proposed estimator through simulations and compare it against MI. Our analytical solution is more efficient than MI and avoids SE misestimation—a known phenomenon associated with Rubin's variance equation.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37940608</pmid><doi>10.1002/pst.2348</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5265-8160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-1604
ispartof Pharmaceutical statistics : the journal of the pharmaceutical industry, 2024-03, Vol.23 (2), p.219-241
issn 1539-1604
1539-1612
language eng
recordid cdi_proquest_miscellaneous_2888035911
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Humans
Probability
title An illness–death multistate model to implement delta adjustment and reference‐based imputation with time‐to‐event endpoints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20illness%E2%80%93death%20multistate%20model%20to%20implement%20delta%20adjustment%20and%20reference%E2%80%90based%20imputation%20with%20time%E2%80%90to%E2%80%90event%20endpoints&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Garc%C3%ADa%E2%80%90Hernandez,%20Alberto&rft.date=2024-03&rft.volume=23&rft.issue=2&rft.spage=219&rft.epage=241&rft.pages=219-241&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2348&rft_dat=%3Cproquest_cross%3E2938234392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938234392&rft_id=info:pmid/37940608&rfr_iscdi=true