Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries
P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakth...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (12), p.e2307377-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e2307377 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Xu, Xiaoqian Hu, Sijiang Pan, Qichang Huang, Youguo Zhang, Jingchao Chen, Yanan Wang, Hongqiang Zheng, Fenghua Li, Qingyu |
description | P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density.
The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems. |
doi_str_mv | 10.1002/smll.202307377 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888035883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888035883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EglJYGVEkFpaWs93EzgjhUypi4GNhsBzHCa6SuNiJUDd-Ar-RX4KrQpFYmO5099yr916EDjCMMQA58U1djwkQCowytoEGOMF0lHCSbq57DDto1_sZAMVkwrbRDmXpBBLCB-j5on2RrTJtFd13rldd73ToZG5q0y2ifBHdVieZizL7-f5xbue6iErromtTvYTBk607WYUDW5i-CYMb20Znsuu0M9rvoa1S1l7vf9chery8eMiuR9O7q5vsdDpSlHA2YipYzAGrgqRAAacJT1IgUpaUAY5xwYGWJSlzHUNS5gVXILWaFFqHr9OwHKLjle7c2dde-040xitd17LVtveCcB6omHMa0KM_6Mz2rg3uBEkZpZOYMR6o8YpSznrvdCnmzjTSLQQGsYxdLGMX69jDweG3bJ83uljjPzkHIF0Bb6bWi3_kxP3tdPor_gVfdZBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345778</pqid></control><display><type>article</type><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</creator><creatorcontrib>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</creatorcontrib><description>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density.
The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307377</identifier><identifier>PMID: 37940628</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; Charging ; Cr, Mg co‐doped ; Electrode materials ; Electrons ; Electrostatic shielding ; Evolution ; High voltages ; lattice oxygen evolution ; Oxygen ; P2‐O2 ; Phase transitions ; Photoelectrons ; pillar effect ; Raman spectroscopy ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; Structural stability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307377-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</cites><orcidid>0000-0003-0418-0240 ; 0000-0002-6346-6372 ; 0000-0001-7522-4728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307377$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307377$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaoqian</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density.
The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Cr, Mg co‐doped</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Electrostatic shielding</subject><subject>Evolution</subject><subject>High voltages</subject><subject>lattice oxygen evolution</subject><subject>Oxygen</subject><subject>P2‐O2</subject><subject>Phase transitions</subject><subject>Photoelectrons</subject><subject>pillar effect</subject><subject>Raman spectroscopy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EglJYGVEkFpaWs93EzgjhUypi4GNhsBzHCa6SuNiJUDd-Ar-RX4KrQpFYmO5099yr916EDjCMMQA58U1djwkQCowytoEGOMF0lHCSbq57DDto1_sZAMVkwrbRDmXpBBLCB-j5on2RrTJtFd13rldd73ToZG5q0y2ifBHdVieZizL7-f5xbue6iErromtTvYTBk607WYUDW5i-CYMb20Znsuu0M9rvoa1S1l7vf9chery8eMiuR9O7q5vsdDpSlHA2YipYzAGrgqRAAacJT1IgUpaUAY5xwYGWJSlzHUNS5gVXILWaFFqHr9OwHKLjle7c2dde-040xitd17LVtveCcB6omHMa0KM_6Mz2rg3uBEkZpZOYMR6o8YpSznrvdCnmzjTSLQQGsYxdLGMX69jDweG3bJ83uljjPzkHIF0Bb6bWi3_kxP3tdPor_gVfdZBu</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Xu, Xiaoqian</creator><creator>Hu, Sijiang</creator><creator>Pan, Qichang</creator><creator>Huang, Youguo</creator><creator>Zhang, Jingchao</creator><creator>Chen, Yanan</creator><creator>Wang, Hongqiang</creator><creator>Zheng, Fenghua</creator><creator>Li, Qingyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid><orcidid>https://orcid.org/0000-0001-7522-4728</orcidid></search><sort><creationdate>20240301</creationdate><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><author>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Cr, Mg co‐doped</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Electrostatic shielding</topic><topic>Evolution</topic><topic>High voltages</topic><topic>lattice oxygen evolution</topic><topic>Oxygen</topic><topic>P2‐O2</topic><topic>Phase transitions</topic><topic>Photoelectrons</topic><topic>pillar effect</topic><topic>Raman spectroscopy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoqian</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoqian</au><au>Hu, Sijiang</au><au>Pan, Qichang</au><au>Huang, Youguo</au><au>Zhang, Jingchao</au><au>Chen, Yanan</au><au>Wang, Hongqiang</au><au>Zheng, Fenghua</au><au>Li, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>e2307377</spage><epage>n/a</epage><pages>e2307377-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density.
The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37940628</pmid><doi>10.1002/smll.202307377</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid><orcidid>https://orcid.org/0000-0001-7522-4728</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307377-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2888035883 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Cathodes Charging Cr, Mg co‐doped Electrode materials Electrons Electrostatic shielding Evolution High voltages lattice oxygen evolution Oxygen P2‐O2 Phase transitions Photoelectrons pillar effect Raman spectroscopy Sodium Sodium-ion batteries Spectrum analysis Structural stability |
title | Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Structure%20Stability%20by%20Mg/Cr%20Co%E2%80%90Doped%20for%20High%E2%80%90Voltage%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xu,%20Xiaoqian&rft.date=2024-03-01&rft.volume=20&rft.issue=12&rft.spage=e2307377&rft.epage=n/a&rft.pages=e2307377-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307377&rft_dat=%3Cproquest_cross%3E2888035883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345778&rft_id=info:pmid/37940628&rfr_iscdi=true |