Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries

P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (12), p.e2307377-n/a
Hauptverfasser: Xu, Xiaoqian, Hu, Sijiang, Pan, Qichang, Huang, Youguo, Zhang, Jingchao, Chen, Yanan, Wang, Hongqiang, Zheng, Fenghua, Li, Qingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2307377
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Xu, Xiaoqian
Hu, Sijiang
Pan, Qichang
Huang, Youguo
Zhang, Jingchao
Chen, Yanan
Wang, Hongqiang
Zheng, Fenghua
Li, Qingyu
description P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density. The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.
doi_str_mv 10.1002/smll.202307377
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888035883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888035883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EglJYGVEkFpaWs93EzgjhUypi4GNhsBzHCa6SuNiJUDd-Ar-RX4KrQpFYmO5099yr916EDjCMMQA58U1djwkQCowytoEGOMF0lHCSbq57DDto1_sZAMVkwrbRDmXpBBLCB-j5on2RrTJtFd13rldd73ToZG5q0y2ifBHdVieZizL7-f5xbue6iErromtTvYTBk607WYUDW5i-CYMb20Znsuu0M9rvoa1S1l7vf9chery8eMiuR9O7q5vsdDpSlHA2YipYzAGrgqRAAacJT1IgUpaUAY5xwYGWJSlzHUNS5gVXILWaFFqHr9OwHKLjle7c2dde-040xitd17LVtveCcB6omHMa0KM_6Mz2rg3uBEkZpZOYMR6o8YpSznrvdCnmzjTSLQQGsYxdLGMX69jDweG3bJ83uljjPzkHIF0Bb6bWi3_kxP3tdPor_gVfdZBu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345778</pqid></control><display><type>article</type><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</creator><creatorcontrib>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</creatorcontrib><description>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density. The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307377</identifier><identifier>PMID: 37940628</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; Charging ; Cr, Mg co‐doped ; Electrode materials ; Electrons ; Electrostatic shielding ; Evolution ; High voltages ; lattice oxygen evolution ; Oxygen ; P2‐O2 ; Phase transitions ; Photoelectrons ; pillar effect ; Raman spectroscopy ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; Structural stability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307377-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</cites><orcidid>0000-0003-0418-0240 ; 0000-0002-6346-6372 ; 0000-0001-7522-4728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307377$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307377$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37940628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaoqian</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density. The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Cr, Mg co‐doped</subject><subject>Electrode materials</subject><subject>Electrons</subject><subject>Electrostatic shielding</subject><subject>Evolution</subject><subject>High voltages</subject><subject>lattice oxygen evolution</subject><subject>Oxygen</subject><subject>P2‐O2</subject><subject>Phase transitions</subject><subject>Photoelectrons</subject><subject>pillar effect</subject><subject>Raman spectroscopy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EglJYGVEkFpaWs93EzgjhUypi4GNhsBzHCa6SuNiJUDd-Ar-RX4KrQpFYmO5099yr916EDjCMMQA58U1djwkQCowytoEGOMF0lHCSbq57DDto1_sZAMVkwrbRDmXpBBLCB-j5on2RrTJtFd13rldd73ToZG5q0y2ifBHdVieZizL7-f5xbue6iErromtTvYTBk607WYUDW5i-CYMb20Znsuu0M9rvoa1S1l7vf9chery8eMiuR9O7q5vsdDpSlHA2YipYzAGrgqRAAacJT1IgUpaUAY5xwYGWJSlzHUNS5gVXILWaFFqHr9OwHKLjle7c2dde-040xitd17LVtveCcB6omHMa0KM_6Mz2rg3uBEkZpZOYMR6o8YpSznrvdCnmzjTSLQQGsYxdLGMX69jDweG3bJ83uljjPzkHIF0Bb6bWi3_kxP3tdPor_gVfdZBu</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Xu, Xiaoqian</creator><creator>Hu, Sijiang</creator><creator>Pan, Qichang</creator><creator>Huang, Youguo</creator><creator>Zhang, Jingchao</creator><creator>Chen, Yanan</creator><creator>Wang, Hongqiang</creator><creator>Zheng, Fenghua</creator><creator>Li, Qingyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid><orcidid>https://orcid.org/0000-0001-7522-4728</orcidid></search><sort><creationdate>20240301</creationdate><title>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</title><author>Xu, Xiaoqian ; Hu, Sijiang ; Pan, Qichang ; Huang, Youguo ; Zhang, Jingchao ; Chen, Yanan ; Wang, Hongqiang ; Zheng, Fenghua ; Li, Qingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3287-7c681b01cd2903019686902aaf370151d803ff2fbe506fbd8c0aec4dee2309803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Cr, Mg co‐doped</topic><topic>Electrode materials</topic><topic>Electrons</topic><topic>Electrostatic shielding</topic><topic>Evolution</topic><topic>High voltages</topic><topic>lattice oxygen evolution</topic><topic>Oxygen</topic><topic>P2‐O2</topic><topic>Phase transitions</topic><topic>Photoelectrons</topic><topic>pillar effect</topic><topic>Raman spectroscopy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoqian</creatorcontrib><creatorcontrib>Hu, Sijiang</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Zheng, Fenghua</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoqian</au><au>Hu, Sijiang</au><au>Pan, Qichang</au><au>Huang, Youguo</au><au>Zhang, Jingchao</au><au>Chen, Yanan</au><au>Wang, Hongqiang</au><au>Zheng, Fenghua</au><au>Li, Qingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>e2307377</spage><epage>n/a</epage><pages>e2307377-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>P2‐Na2/3Ni1/3Mn2/3O2 cathode materials have garnered significant attention due to their high cationic and anionic redox capacity under high voltage. However, the challenge of structural instability caused by lattice oxygen evolution and P2‐O2 phase transition during deep charging persists. A breakthrough is achieved through a simple one‐step synthesis of Cr, Mg co‐doped P2‐NaNMCM, resulting in a bi‐functional improvement effect. P2‐NaNMCM‐0.01 exhibits an impressive capacity retention rate of 82% after 100 cycles at 1 C. In situ X‐ray diffraction analysis shows that the “pillar effect” of Mg mitigates the weakening of the electrostatic shielding and effectively suppresses the phase transition of P2‐O2 during the charging and discharging process. This successfully averts serious volume expansion linked to the phase transition, as well as enhances the Na+ migration. Simultaneously, in situ Raman spectroscopy and ex situ X‐ray photoelectron spectroscopy tests demonstrate that the strong oxygen affinity of Cr forms a robust TM─O bond, effectively restraining lattice oxygen evolution during deep charging. This study pioneers a novel approach to designing and optimizing layered oxide cathode materials for sodium‐ion batteries, promising high operating voltage and energy density. The long cycle stability and rate performance of P2‐Na0.66Ni0.31Mn0.67Cr0.02Mg0.01O2 are improved by Cr, Mg co‐doping, which effectively inhibits the structural collapse caused by the irreversible transformation of P2‐O2 and the oxygen precipitation caused by the irreversible migration of oxygen anions during deep charging. This is a strategy contributing to the realization of high‐voltage and high‐energy‐density systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37940628</pmid><doi>10.1002/smll.202307377</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid><orcidid>https://orcid.org/0000-0001-7522-4728</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307377-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2888035883
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Cathodes
Charging
Cr, Mg co‐doped
Electrode materials
Electrons
Electrostatic shielding
Evolution
High voltages
lattice oxygen evolution
Oxygen
P2‐O2
Phase transitions
Photoelectrons
pillar effect
Raman spectroscopy
Sodium
Sodium-ion batteries
Spectrum analysis
Structural stability
title Enhancing Structure Stability by Mg/Cr Co‐Doped for High‐Voltage Sodium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Structure%20Stability%20by%20Mg/Cr%20Co%E2%80%90Doped%20for%20High%E2%80%90Voltage%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xu,%20Xiaoqian&rft.date=2024-03-01&rft.volume=20&rft.issue=12&rft.spage=e2307377&rft.epage=n/a&rft.pages=e2307377-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307377&rft_dat=%3Cproquest_cross%3E2888035883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345778&rft_id=info:pmid/37940628&rfr_iscdi=true