Mitophagy-dependent cardioprotection of resistance training on heart failure

Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2023-12, Vol.135 (6), p.1390-1401
Hauptverfasser: Guo, Chen, Wu, Rui-Yun, Dou, Jia-Hao, Song, Shou-Fang, Sun, Xue-Lu, Hu, Yi-Wei, Guo, Fan-Shun, Wei, Jia, Lin, Lin, Wei, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue 6
container_start_page 1390
container_title Journal of applied physiology (1985)
container_volume 135
creator Guo, Chen
Wu, Rui-Yun
Dou, Jia-Hao
Song, Shou-Fang
Sun, Xue-Lu
Hu, Yi-Wei
Guo, Fan-Shun
Wei, Jia
Lin, Lin
Wei, Jin
description Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure model was constructed by transverse aortic constriction surgery, followed by 8 wk of resistance training (RT), moderate-intensity continuous training combined with resistance training (MRT), and high-intensity interval training combined with resistance training (HRT), and subsequently analyzed the changes of maximum load, cardiac structure and function, and myocardial mitophagic activity. The role and signaling of mitophagy in exercise protection of heart failure were investigated by knockdown of and genes in primary neonatal cardiomyocytes. RT and especially MRT improved maximum load ( < 0.0001), myocardial morphology and fibrosis ( < 0.0001), reduced left ventricular diameter and enhanced left ventricular systolic function ( < 0.01), and enhanced myocardial mitophagic activity and HIF1α expression ( < 0.05) in heart failure mice. However, HRT had no obvious protective effect on ventricular diameter and function or mitophagy. The abilities of exercise stimulation to regulate reactive oxygen species, adenosine triphosphate, and brain natriuretic peptide were impaired after knockdown of and genes inhibited mitophagy in failing cardiomyocytes ( < 0.05). Different exercise modalities provide discrepant cardiovascular effects on heart failure, and MRT exhibits optimal protection. The HIF1α-Parkin-mitophagy pathway is involved in the protection and regulation of exercise on heart failure. Impaired myocardial mitophagy is implicated in the pathogenesis of heart failure. Resistance training alone or combined with different aerobic trainings provide discrepant cardiovascular effects on heart failure, and the cardioprotective function depends on HIF1α-Parkin-mitophagy pathway.
doi_str_mv 10.1152/japplphysiol.00674.2023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888034279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888034279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-222c387ae9ae6b5d7a01a2b8b75fe5005e27b1ffa6b3fdc02f799ab59dbf91fa3</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EoqXwCpCRJcWXuE5GVHGTilhgtk6c49ZVGgfbGfr2pFAQ0xn-29FHyA2jc8Ykv9tC37f9Zh-db-eULlQx55SLEzIdVZ6zBWWnZFoqSXMlSzUhFzFuKWVFIdk5mQhVFVwKNiWrV5d8v4H1Pm-wx67BLmUGQuN8H3xCk5zvMm-zgNHFBJ3BLAVwnevW2ahsEELKLLh2CHhJziy0Ea-Od0Y-Hh_el8_56u3pZXm_ys04nHLOuRGlAqwAF7VsFFAGvC5rJS1KSiVyVTNrYVEL2xjKraoqqGXV1LZiFsSM3P70ji9-DhiT3rlosG2hQz9EzcuypKLgqhqt6sdqgo8xoNV9cDsIe82oPqDU_1Hqb5T6gHJMXh9HhnqHzV_ul534Amredfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888034279</pqid></control><display><type>article</type><title>Mitophagy-dependent cardioprotection of resistance training on heart failure</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Chen ; Wu, Rui-Yun ; Dou, Jia-Hao ; Song, Shou-Fang ; Sun, Xue-Lu ; Hu, Yi-Wei ; Guo, Fan-Shun ; Wei, Jia ; Lin, Lin ; Wei, Jin</creator><creatorcontrib>Guo, Chen ; Wu, Rui-Yun ; Dou, Jia-Hao ; Song, Shou-Fang ; Sun, Xue-Lu ; Hu, Yi-Wei ; Guo, Fan-Shun ; Wei, Jia ; Lin, Lin ; Wei, Jin</creatorcontrib><description>Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure model was constructed by transverse aortic constriction surgery, followed by 8 wk of resistance training (RT), moderate-intensity continuous training combined with resistance training (MRT), and high-intensity interval training combined with resistance training (HRT), and subsequently analyzed the changes of maximum load, cardiac structure and function, and myocardial mitophagic activity. The role and signaling of mitophagy in exercise protection of heart failure were investigated by knockdown of and genes in primary neonatal cardiomyocytes. RT and especially MRT improved maximum load ( &lt; 0.0001), myocardial morphology and fibrosis ( &lt; 0.0001), reduced left ventricular diameter and enhanced left ventricular systolic function ( &lt; 0.01), and enhanced myocardial mitophagic activity and HIF1α expression ( &lt; 0.05) in heart failure mice. However, HRT had no obvious protective effect on ventricular diameter and function or mitophagy. The abilities of exercise stimulation to regulate reactive oxygen species, adenosine triphosphate, and brain natriuretic peptide were impaired after knockdown of and genes inhibited mitophagy in failing cardiomyocytes ( &lt; 0.05). Different exercise modalities provide discrepant cardiovascular effects on heart failure, and MRT exhibits optimal protection. The HIF1α-Parkin-mitophagy pathway is involved in the protection and regulation of exercise on heart failure. Impaired myocardial mitophagy is implicated in the pathogenesis of heart failure. Resistance training alone or combined with different aerobic trainings provide discrepant cardiovascular effects on heart failure, and the cardioprotective function depends on HIF1α-Parkin-mitophagy pathway.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00674.2023</identifier><identifier>PMID: 37942531</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Heart Failure ; Humans ; Mice ; Mitophagy ; Myocytes, Cardiac - metabolism ; Resistance Training ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Journal of applied physiology (1985), 2023-12, Vol.135 (6), p.1390-1401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-222c387ae9ae6b5d7a01a2b8b75fe5005e27b1ffa6b3fdc02f799ab59dbf91fa3</citedby><cites>FETCH-LOGICAL-c379t-222c387ae9ae6b5d7a01a2b8b75fe5005e27b1ffa6b3fdc02f799ab59dbf91fa3</cites><orcidid>0000-0002-8949-7820 ; 0000-0002-4293-4624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3037,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37942531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chen</creatorcontrib><creatorcontrib>Wu, Rui-Yun</creatorcontrib><creatorcontrib>Dou, Jia-Hao</creatorcontrib><creatorcontrib>Song, Shou-Fang</creatorcontrib><creatorcontrib>Sun, Xue-Lu</creatorcontrib><creatorcontrib>Hu, Yi-Wei</creatorcontrib><creatorcontrib>Guo, Fan-Shun</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Wei, Jin</creatorcontrib><title>Mitophagy-dependent cardioprotection of resistance training on heart failure</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure model was constructed by transverse aortic constriction surgery, followed by 8 wk of resistance training (RT), moderate-intensity continuous training combined with resistance training (MRT), and high-intensity interval training combined with resistance training (HRT), and subsequently analyzed the changes of maximum load, cardiac structure and function, and myocardial mitophagic activity. The role and signaling of mitophagy in exercise protection of heart failure were investigated by knockdown of and genes in primary neonatal cardiomyocytes. RT and especially MRT improved maximum load ( &lt; 0.0001), myocardial morphology and fibrosis ( &lt; 0.0001), reduced left ventricular diameter and enhanced left ventricular systolic function ( &lt; 0.01), and enhanced myocardial mitophagic activity and HIF1α expression ( &lt; 0.05) in heart failure mice. However, HRT had no obvious protective effect on ventricular diameter and function or mitophagy. The abilities of exercise stimulation to regulate reactive oxygen species, adenosine triphosphate, and brain natriuretic peptide were impaired after knockdown of and genes inhibited mitophagy in failing cardiomyocytes ( &lt; 0.05). Different exercise modalities provide discrepant cardiovascular effects on heart failure, and MRT exhibits optimal protection. The HIF1α-Parkin-mitophagy pathway is involved in the protection and regulation of exercise on heart failure. Impaired myocardial mitophagy is implicated in the pathogenesis of heart failure. Resistance training alone or combined with different aerobic trainings provide discrepant cardiovascular effects on heart failure, and the cardioprotective function depends on HIF1α-Parkin-mitophagy pathway.</description><subject>Animals</subject><subject>Heart Failure</subject><subject>Humans</subject><subject>Mice</subject><subject>Mitophagy</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Resistance Training</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkLtOwzAUhi0EoqXwCpCRJcWXuE5GVHGTilhgtk6c49ZVGgfbGfr2pFAQ0xn-29FHyA2jc8Ykv9tC37f9Zh-db-eULlQx55SLEzIdVZ6zBWWnZFoqSXMlSzUhFzFuKWVFIdk5mQhVFVwKNiWrV5d8v4H1Pm-wx67BLmUGQuN8H3xCk5zvMm-zgNHFBJ3BLAVwnevW2ahsEELKLLh2CHhJziy0Ea-Od0Y-Hh_el8_56u3pZXm_ys04nHLOuRGlAqwAF7VsFFAGvC5rJS1KSiVyVTNrYVEL2xjKraoqqGXV1LZiFsSM3P70ji9-DhiT3rlosG2hQz9EzcuypKLgqhqt6sdqgo8xoNV9cDsIe82oPqDU_1Hqb5T6gHJMXh9HhnqHzV_ul534Amredfo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Guo, Chen</creator><creator>Wu, Rui-Yun</creator><creator>Dou, Jia-Hao</creator><creator>Song, Shou-Fang</creator><creator>Sun, Xue-Lu</creator><creator>Hu, Yi-Wei</creator><creator>Guo, Fan-Shun</creator><creator>Wei, Jia</creator><creator>Lin, Lin</creator><creator>Wei, Jin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8949-7820</orcidid><orcidid>https://orcid.org/0000-0002-4293-4624</orcidid></search><sort><creationdate>20231201</creationdate><title>Mitophagy-dependent cardioprotection of resistance training on heart failure</title><author>Guo, Chen ; Wu, Rui-Yun ; Dou, Jia-Hao ; Song, Shou-Fang ; Sun, Xue-Lu ; Hu, Yi-Wei ; Guo, Fan-Shun ; Wei, Jia ; Lin, Lin ; Wei, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-222c387ae9ae6b5d7a01a2b8b75fe5005e27b1ffa6b3fdc02f799ab59dbf91fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Heart Failure</topic><topic>Humans</topic><topic>Mice</topic><topic>Mitophagy</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Resistance Training</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chen</creatorcontrib><creatorcontrib>Wu, Rui-Yun</creatorcontrib><creatorcontrib>Dou, Jia-Hao</creatorcontrib><creatorcontrib>Song, Shou-Fang</creatorcontrib><creatorcontrib>Sun, Xue-Lu</creatorcontrib><creatorcontrib>Hu, Yi-Wei</creatorcontrib><creatorcontrib>Guo, Fan-Shun</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Wei, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chen</au><au>Wu, Rui-Yun</au><au>Dou, Jia-Hao</au><au>Song, Shou-Fang</au><au>Sun, Xue-Lu</au><au>Hu, Yi-Wei</au><au>Guo, Fan-Shun</au><au>Wei, Jia</au><au>Lin, Lin</au><au>Wei, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitophagy-dependent cardioprotection of resistance training on heart failure</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>135</volume><issue>6</issue><spage>1390</spage><epage>1401</epage><pages>1390-1401</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure model was constructed by transverse aortic constriction surgery, followed by 8 wk of resistance training (RT), moderate-intensity continuous training combined with resistance training (MRT), and high-intensity interval training combined with resistance training (HRT), and subsequently analyzed the changes of maximum load, cardiac structure and function, and myocardial mitophagic activity. The role and signaling of mitophagy in exercise protection of heart failure were investigated by knockdown of and genes in primary neonatal cardiomyocytes. RT and especially MRT improved maximum load ( &lt; 0.0001), myocardial morphology and fibrosis ( &lt; 0.0001), reduced left ventricular diameter and enhanced left ventricular systolic function ( &lt; 0.01), and enhanced myocardial mitophagic activity and HIF1α expression ( &lt; 0.05) in heart failure mice. However, HRT had no obvious protective effect on ventricular diameter and function or mitophagy. The abilities of exercise stimulation to regulate reactive oxygen species, adenosine triphosphate, and brain natriuretic peptide were impaired after knockdown of and genes inhibited mitophagy in failing cardiomyocytes ( &lt; 0.05). Different exercise modalities provide discrepant cardiovascular effects on heart failure, and MRT exhibits optimal protection. The HIF1α-Parkin-mitophagy pathway is involved in the protection and regulation of exercise on heart failure. Impaired myocardial mitophagy is implicated in the pathogenesis of heart failure. Resistance training alone or combined with different aerobic trainings provide discrepant cardiovascular effects on heart failure, and the cardioprotective function depends on HIF1α-Parkin-mitophagy pathway.</abstract><cop>United States</cop><pmid>37942531</pmid><doi>10.1152/japplphysiol.00674.2023</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8949-7820</orcidid><orcidid>https://orcid.org/0000-0002-4293-4624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2023-12, Vol.135 (6), p.1390-1401
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_2888034279
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Heart Failure
Humans
Mice
Mitophagy
Myocytes, Cardiac - metabolism
Resistance Training
Ubiquitin-Protein Ligases - metabolism
title Mitophagy-dependent cardioprotection of resistance training on heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitophagy-dependent%20cardioprotection%20of%20resistance%20training%20on%20heart%20failure&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Guo,%20Chen&rft.date=2023-12-01&rft.volume=135&rft.issue=6&rft.spage=1390&rft.epage=1401&rft.pages=1390-1401&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00674.2023&rft_dat=%3Cproquest_cross%3E2888034279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2888034279&rft_id=info:pmid/37942531&rfr_iscdi=true