Quality assessment for the putative intrinsic disorder in proteins

Abstract Motivation While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2019-05, Vol.35 (10), p.1692-1700
Hauptverfasser: Hu, Gang, Wu, Zhonghua, Oldfield, Christopher J, Wang, Chen, Kurgan, Lukasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1700
container_issue 10
container_start_page 1692
container_title Bioinformatics
container_volume 35
creator Hu, Gang
Wu, Zhonghua
Oldfield, Christopher J
Wang, Chen
Kurgan, Lukasz
description Abstract Motivation While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA scores derived from putative disorder propensities perform relatively poorly for native disordered residues. Here we design and validate a general approach to construct QA predictors for disorder predictions. Results The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative design elements including use and scaling of selected physicochemical properties of the input sequence, post-processing of disorder propensity scores, and a feature selection that optimizes the predictive models to a specific disorder predictor. We empirically establish that each one of these elements contributes to the overall predictive performance of our tool and that QUARTER’s outputs significantly outperform QA scores derived from the outputs generated the disorder predictors. The best performing QA scores for a single disorder predictor identify 13% of residues that are predicted with 98% precision. QA scores computed by combining results of the ten disorder predictors cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA scores. QA scores based on the high precision combined predictions are applied to analyze disorder in the human proteome. Availability and implementation http://biomine.cs.vcu.edu/servers/QUARTER/ Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/bty881
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888001232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/bty881</oup_id><sourcerecordid>2888001232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-dd356961f372fe7d5dacb785b63e95bcaf2d70c6e7e7eb5c55cefd21d48ab1543</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMozjj6E5Qu3dTJo2nSpQ6-YEAEXZc8bjEyfZikwvx7Ix0HXCl3cS-H754DB6Fzgq8IrthSu951Te9bFZ0JSx23UpIDNCesFHkhCTnc35jN0EkI7xhjjnl5jGYMM1phLOfo5nlUGxe3mQoBQmihi1lyzeIbZMMYk_knZK6L3nXBmcy60HsLPknZ4PsIST5FR43aBDjb7QV6vbt9WT3k66f7x9X1OjcFwzG3lvGyKknDBG1AWG6V0UJyXTKouDaqoVZgU4JIo7nh3EBjKbGFVJrwgi3Q5eSbgj9GCLFuXTCw2agO-jHUVEqJMaGM_o0SSoqKClEmlE-o8X0IHpp68K5VflsTXH83Xf9uup6aTn8Xu4hRt2D3Xz_VJgBPQD8O__T8AhhEkjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121492776</pqid></control><display><type>article</type><title>Quality assessment for the putative intrinsic disorder in proteins</title><source>Oxford Journals Open Access Collection</source><creator>Hu, Gang ; Wu, Zhonghua ; Oldfield, Christopher J ; Wang, Chen ; Kurgan, Lukasz</creator><creatorcontrib>Hu, Gang ; Wu, Zhonghua ; Oldfield, Christopher J ; Wang, Chen ; Kurgan, Lukasz</creatorcontrib><description>Abstract Motivation While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA scores derived from putative disorder propensities perform relatively poorly for native disordered residues. Here we design and validate a general approach to construct QA predictors for disorder predictions. Results The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative design elements including use and scaling of selected physicochemical properties of the input sequence, post-processing of disorder propensity scores, and a feature selection that optimizes the predictive models to a specific disorder predictor. We empirically establish that each one of these elements contributes to the overall predictive performance of our tool and that QUARTER’s outputs significantly outperform QA scores derived from the outputs generated the disorder predictors. The best performing QA scores for a single disorder predictor identify 13% of residues that are predicted with 98% precision. QA scores computed by combining results of the ten disorder predictors cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA scores. QA scores based on the high precision combined predictions are applied to analyze disorder in the human proteome. Availability and implementation http://biomine.cs.vcu.edu/servers/QUARTER/ Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bty881</identifier><identifier>PMID: 30329008</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>bioinformatics ; Computational Biology ; Humans ; Proteome</subject><ispartof>Bioinformatics, 2019-05, Vol.35 (10), p.1692-1700</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-dd356961f372fe7d5dacb785b63e95bcaf2d70c6e7e7eb5c55cefd21d48ab1543</citedby><cites>FETCH-LOGICAL-c430t-dd356961f372fe7d5dacb785b63e95bcaf2d70c6e7e7eb5c55cefd21d48ab1543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/bty881$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30329008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Wu, Zhonghua</creatorcontrib><creatorcontrib>Oldfield, Christopher J</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Kurgan, Lukasz</creatorcontrib><title>Quality assessment for the putative intrinsic disorder in proteins</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA scores derived from putative disorder propensities perform relatively poorly for native disordered residues. Here we design and validate a general approach to construct QA predictors for disorder predictions. Results The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative design elements including use and scaling of selected physicochemical properties of the input sequence, post-processing of disorder propensity scores, and a feature selection that optimizes the predictive models to a specific disorder predictor. We empirically establish that each one of these elements contributes to the overall predictive performance of our tool and that QUARTER’s outputs significantly outperform QA scores derived from the outputs generated the disorder predictors. The best performing QA scores for a single disorder predictor identify 13% of residues that are predicted with 98% precision. QA scores computed by combining results of the ten disorder predictors cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA scores. QA scores based on the high precision combined predictions are applied to analyze disorder in the human proteome. Availability and implementation http://biomine.cs.vcu.edu/servers/QUARTER/ Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>bioinformatics</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Proteome</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLxDAUhYMozjj6E5Qu3dTJo2nSpQ6-YEAEXZc8bjEyfZikwvx7Ix0HXCl3cS-H754DB6Fzgq8IrthSu951Te9bFZ0JSx23UpIDNCesFHkhCTnc35jN0EkI7xhjjnl5jGYMM1phLOfo5nlUGxe3mQoBQmihi1lyzeIbZMMYk_knZK6L3nXBmcy60HsLPknZ4PsIST5FR43aBDjb7QV6vbt9WT3k66f7x9X1OjcFwzG3lvGyKknDBG1AWG6V0UJyXTKouDaqoVZgU4JIo7nh3EBjKbGFVJrwgi3Q5eSbgj9GCLFuXTCw2agO-jHUVEqJMaGM_o0SSoqKClEmlE-o8X0IHpp68K5VflsTXH83Xf9uup6aTn8Xu4hRt2D3Xz_VJgBPQD8O__T8AhhEkjQ</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Hu, Gang</creator><creator>Wu, Zhonghua</creator><creator>Oldfield, Christopher J</creator><creator>Wang, Chen</creator><creator>Kurgan, Lukasz</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20190515</creationdate><title>Quality assessment for the putative intrinsic disorder in proteins</title><author>Hu, Gang ; Wu, Zhonghua ; Oldfield, Christopher J ; Wang, Chen ; Kurgan, Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-dd356961f372fe7d5dacb785b63e95bcaf2d70c6e7e7eb5c55cefd21d48ab1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bioinformatics</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Proteome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>Wu, Zhonghua</creatorcontrib><creatorcontrib>Oldfield, Christopher J</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Kurgan, Lukasz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Gang</au><au>Wu, Zhonghua</au><au>Oldfield, Christopher J</au><au>Wang, Chen</au><au>Kurgan, Lukasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality assessment for the putative intrinsic disorder in proteins</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2019-05-15</date><risdate>2019</risdate><volume>35</volume><issue>10</issue><spage>1692</spage><epage>1700</epage><pages>1692-1700</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA scores derived from putative disorder propensities perform relatively poorly for native disordered residues. Here we design and validate a general approach to construct QA predictors for disorder predictions. Results The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative design elements including use and scaling of selected physicochemical properties of the input sequence, post-processing of disorder propensity scores, and a feature selection that optimizes the predictive models to a specific disorder predictor. We empirically establish that each one of these elements contributes to the overall predictive performance of our tool and that QUARTER’s outputs significantly outperform QA scores derived from the outputs generated the disorder predictors. The best performing QA scores for a single disorder predictor identify 13% of residues that are predicted with 98% precision. QA scores computed by combining results of the ten disorder predictors cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA scores. QA scores based on the high precision combined predictions are applied to analyze disorder in the human proteome. Availability and implementation http://biomine.cs.vcu.edu/servers/QUARTER/ Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30329008</pmid><doi>10.1093/bioinformatics/bty881</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2019-05, Vol.35 (10), p.1692-1700
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2888001232
source Oxford Journals Open Access Collection
subjects bioinformatics
Computational Biology
Humans
Proteome
title Quality assessment for the putative intrinsic disorder in proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20assessment%20for%20the%20putative%20intrinsic%20disorder%20in%20proteins&rft.jtitle=Bioinformatics&rft.au=Hu,%20Gang&rft.date=2019-05-15&rft.volume=35&rft.issue=10&rft.spage=1692&rft.epage=1700&rft.pages=1692-1700&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/bty881&rft_dat=%3Cproquest_TOX%3E2888001232%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121492776&rft_id=info:pmid/30329008&rft_oup_id=10.1093/bioinformatics/bty881&rfr_iscdi=true