A fault-tolerant neural aided controller for aircraft auto-landing
This paper presents a neural-aided controller that enhances the fault tolerant capabilities of a high performance fighter aircraft during the landing phase when subjected to severe winds and failures such as stuck control surfaces. The controller architecture uses a neural controller aiding an exist...
Gespeichert in:
Veröffentlicht in: | Aerospace science and technology 2006, Vol.10 (1), p.49-61 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Aerospace science and technology |
container_volume | 10 |
creator | Pashilkar, A.A. Sundararajan, N. Saratchandran, P. |
description | This paper presents a neural-aided controller that enhances the fault tolerant capabilities of a high performance fighter aircraft during the landing phase when subjected to severe winds and failures such as stuck control surfaces. The controller architecture uses a neural controller aiding an existing conventional controller. The neural controller uses a feedback error learning mechanism and employs a dynamic Radial Basis Function neural network called Extended Minimal Resource Allocating Network (EMRAN), which uses only on-line learning and does not need a priori training. The conventional controller is designed using a classical design approach to achieve the desired autonomous landing profile with tight touchdown dispersions called herein as the pillbox. This design is carried out for no failure conditions but with the aircraft being subjected to winds. The failure scenarios considered in this study are: (i) Single faults of either aileron or elevator stuck at certain deflections, and (ii) double fault cases where both the aileron and elevator are stuck at different deflections. Simulation studies indicate that the designed conventional controller has only a limited failure handling ability. However, neural controller augmentation considerably improves the ability to handle large faults and meet the strict touchdown dispersion requirements, thus enlarging the fault-tolerance envelope. |
doi_str_mv | 10.1016/j.ast.2005.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28878630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S127096380500074X</els_id><sourcerecordid>28131814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-73d74ec7024d50fcfb7aff1464a12b60c7123affa33e8e750822cf45dbc3c8313</originalsourceid><addsrcrecordid>eNqNkMtKAzEUQIMoWKsf4G42upua1yQZXFXxBQU3ug5pHpKSTmqSEfx7M7TgToQLCfee--AAcIngAkHEbjYLlcsCQ9gtpoD4CMwQw6wlGPXH9Y85bHtGxCk4y3kDK9FTPAN3y8apMZS2xGCTGkoz2DGp0ChvrGl0HEqKoZYaF1NNJp2UK40aS2yDGowfPs7BiVMh24vDOwfvjw9v98_t6vXp5X65ajURfWk5MZxazSGmpoNOuzVXziHKqEJ4zaDmCJOaUYRYYXkHBcba0c6sNdGCIDIH1_u5uxQ_R5uL3Pqsbahn2DhmiYXgghH4DxARJBCtINqDOsWck3Vyl_xWpW-JoJy0yo2sWuWkVU4Bce25OgxXWavgqjPt828jp6zSrHK3e85WJV_eJpm1t4O2xierizTR_7HlB21YjMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28131814</pqid></control><display><type>article</type><title>A fault-tolerant neural aided controller for aircraft auto-landing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pashilkar, A.A. ; Sundararajan, N. ; Saratchandran, P.</creator><creatorcontrib>Pashilkar, A.A. ; Sundararajan, N. ; Saratchandran, P.</creatorcontrib><description>This paper presents a neural-aided controller that enhances the fault tolerant capabilities of a high performance fighter aircraft during the landing phase when subjected to severe winds and failures such as stuck control surfaces. The controller architecture uses a neural controller aiding an existing conventional controller. The neural controller uses a feedback error learning mechanism and employs a dynamic Radial Basis Function neural network called Extended Minimal Resource Allocating Network (EMRAN), which uses only on-line learning and does not need a priori training. The conventional controller is designed using a classical design approach to achieve the desired autonomous landing profile with tight touchdown dispersions called herein as the pillbox. This design is carried out for no failure conditions but with the aircraft being subjected to winds. The failure scenarios considered in this study are: (i) Single faults of either aileron or elevator stuck at certain deflections, and (ii) double fault cases where both the aileron and elevator are stuck at different deflections. Simulation studies indicate that the designed conventional controller has only a limited failure handling ability. However, neural controller augmentation considerably improves the ability to handle large faults and meet the strict touchdown dispersion requirements, thus enlarging the fault-tolerance envelope.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2005.05.002</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Actuator failure ; Applied sciences ; Auto landing ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; EMRAN ; Exact sciences and technology ; Fault tolerant ; Flight control ; Fundamental areas of phenomenology (including applications) ; Physics ; RBF neural network</subject><ispartof>Aerospace science and technology, 2006, Vol.10 (1), p.49-61</ispartof><rights>2005 Elsevier SAS</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-73d74ec7024d50fcfb7aff1464a12b60c7123affa33e8e750822cf45dbc3c8313</citedby><cites>FETCH-LOGICAL-c389t-73d74ec7024d50fcfb7aff1464a12b60c7123affa33e8e750822cf45dbc3c8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ast.2005.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17460056$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pashilkar, A.A.</creatorcontrib><creatorcontrib>Sundararajan, N.</creatorcontrib><creatorcontrib>Saratchandran, P.</creatorcontrib><title>A fault-tolerant neural aided controller for aircraft auto-landing</title><title>Aerospace science and technology</title><description>This paper presents a neural-aided controller that enhances the fault tolerant capabilities of a high performance fighter aircraft during the landing phase when subjected to severe winds and failures such as stuck control surfaces. The controller architecture uses a neural controller aiding an existing conventional controller. The neural controller uses a feedback error learning mechanism and employs a dynamic Radial Basis Function neural network called Extended Minimal Resource Allocating Network (EMRAN), which uses only on-line learning and does not need a priori training. The conventional controller is designed using a classical design approach to achieve the desired autonomous landing profile with tight touchdown dispersions called herein as the pillbox. This design is carried out for no failure conditions but with the aircraft being subjected to winds. The failure scenarios considered in this study are: (i) Single faults of either aileron or elevator stuck at certain deflections, and (ii) double fault cases where both the aileron and elevator are stuck at different deflections. Simulation studies indicate that the designed conventional controller has only a limited failure handling ability. However, neural controller augmentation considerably improves the ability to handle large faults and meet the strict touchdown dispersion requirements, thus enlarging the fault-tolerance envelope.</description><subject>Actuator failure</subject><subject>Applied sciences</subject><subject>Auto landing</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>EMRAN</subject><subject>Exact sciences and technology</subject><subject>Fault tolerant</subject><subject>Flight control</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>RBF neural network</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUQIMoWKsf4G42upua1yQZXFXxBQU3ug5pHpKSTmqSEfx7M7TgToQLCfee--AAcIngAkHEbjYLlcsCQ9gtpoD4CMwQw6wlGPXH9Y85bHtGxCk4y3kDK9FTPAN3y8apMZS2xGCTGkoz2DGp0ChvrGl0HEqKoZYaF1NNJp2UK40aS2yDGowfPs7BiVMh24vDOwfvjw9v98_t6vXp5X65ajURfWk5MZxazSGmpoNOuzVXziHKqEJ4zaDmCJOaUYRYYXkHBcba0c6sNdGCIDIH1_u5uxQ_R5uL3Pqsbahn2DhmiYXgghH4DxARJBCtINqDOsWck3Vyl_xWpW-JoJy0yo2sWuWkVU4Bce25OgxXWavgqjPt828jp6zSrHK3e85WJV_eJpm1t4O2xierizTR_7HlB21YjMU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Pashilkar, A.A.</creator><creator>Sundararajan, N.</creator><creator>Saratchandran, P.</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>A fault-tolerant neural aided controller for aircraft auto-landing</title><author>Pashilkar, A.A. ; Sundararajan, N. ; Saratchandran, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-73d74ec7024d50fcfb7aff1464a12b60c7123affa33e8e750822cf45dbc3c8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuator failure</topic><topic>Applied sciences</topic><topic>Auto landing</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>EMRAN</topic><topic>Exact sciences and technology</topic><topic>Fault tolerant</topic><topic>Flight control</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>RBF neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pashilkar, A.A.</creatorcontrib><creatorcontrib>Sundararajan, N.</creatorcontrib><creatorcontrib>Saratchandran, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pashilkar, A.A.</au><au>Sundararajan, N.</au><au>Saratchandran, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fault-tolerant neural aided controller for aircraft auto-landing</atitle><jtitle>Aerospace science and technology</jtitle><date>2006</date><risdate>2006</risdate><volume>10</volume><issue>1</issue><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>This paper presents a neural-aided controller that enhances the fault tolerant capabilities of a high performance fighter aircraft during the landing phase when subjected to severe winds and failures such as stuck control surfaces. The controller architecture uses a neural controller aiding an existing conventional controller. The neural controller uses a feedback error learning mechanism and employs a dynamic Radial Basis Function neural network called Extended Minimal Resource Allocating Network (EMRAN), which uses only on-line learning and does not need a priori training. The conventional controller is designed using a classical design approach to achieve the desired autonomous landing profile with tight touchdown dispersions called herein as the pillbox. This design is carried out for no failure conditions but with the aircraft being subjected to winds. The failure scenarios considered in this study are: (i) Single faults of either aileron or elevator stuck at certain deflections, and (ii) double fault cases where both the aileron and elevator are stuck at different deflections. Simulation studies indicate that the designed conventional controller has only a limited failure handling ability. However, neural controller augmentation considerably improves the ability to handle large faults and meet the strict touchdown dispersion requirements, thus enlarging the fault-tolerance envelope.</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.ast.2005.05.002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1270-9638 |
ispartof | Aerospace science and technology, 2006, Vol.10 (1), p.49-61 |
issn | 1270-9638 1626-3219 |
language | eng |
recordid | cdi_proquest_miscellaneous_28878630 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Actuator failure Applied sciences Auto landing Computer science control theory systems Control system synthesis Control theory. Systems EMRAN Exact sciences and technology Fault tolerant Flight control Fundamental areas of phenomenology (including applications) Physics RBF neural network |
title | A fault-tolerant neural aided controller for aircraft auto-landing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fault-tolerant%20neural%20aided%20controller%20for%20aircraft%20auto-landing&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Pashilkar,%20A.A.&rft.date=2006&rft.volume=10&rft.issue=1&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2005.05.002&rft_dat=%3Cproquest_cross%3E28131814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28131814&rft_id=info:pmid/&rft_els_id=S127096380500074X&rfr_iscdi=true |