A floating-gate MOS learning array with locally computed weight updates

We have demonstrated on-chip learning in an array of floating-gate MOS synapse transistors. The array comprises one synapse transistor at each node, and normalization circuitry at the row boundaries. The array computes the inner product of a column input vector and a stored weight matrix. The weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1997-12, Vol.44 (12), p.2281-2289
Hauptverfasser: Diorio, C., Hasler, P., Minch, B.A., Mead, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2289
container_issue 12
container_start_page 2281
container_title IEEE transactions on electron devices
container_volume 44
creator Diorio, C.
Hasler, P.
Minch, B.A.
Mead, C.A.
description We have demonstrated on-chip learning in an array of floating-gate MOS synapse transistors. The array comprises one synapse transistor at each node, and normalization circuitry at the row boundaries. The array computes the inner product of a column input vector and a stored weight matrix. The weights are stored as floating-gate charge; they are nonvolatile, but can increase when we apply a row-learn signal. The input and learn signals are digital pulses; column input pulses that are coincident with row-learn pulses cause weight increases at selected synapses. The normalization circuitry forces row synapses to compete for floating-gate charge, bounding the weight values. The array simultaneously exhibits fast computation and slow adaptation: The inner product computes in 10 /spl mu/s, whereas the weight normalization takes minutes to hours.
doi_str_mv 10.1109/16.644652
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28876882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>644652</ieee_id><sourcerecordid>28289723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-7458dcef7b91a8c3400f45daca0a5d8324f0cd311280c314258addbec6888fe33</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpDKxMnpAYUvxtZ6wqWpCKOgBz5NqXNshtgp2o6r8nKBVzp9PdPfcOh9A9JRNKSf5M1UQJoSS7QCMqpc5yJdQlGhFCTZZzw6_RTUrffdszNkKLKS5Dbdtqv8k2tgX8vvrAAWzc9xNsY7RHfKjaLQ61syEcsat3TdeCxweoNtsWd43vz9ItuiptSHB3qmP0NX_5nL1my9XibTZdZo5r0WZaSOMdlHqdU2scF4SUQnrrLLHSG85ESZznlDJDHKeCSWO9X4NTxpgSOB-jxyG3ifVPB6ktdlVyEILdQ92lghmje8vOgMzkmp2RqKQWVJsePg3QxTqlCGXRxGpn47GgpPh7fkFVMTy_tw-DrQDg352Wv-kLflQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26574178</pqid></control><display><type>article</type><title>A floating-gate MOS learning array with locally computed weight updates</title><source>IEEE Electronic Library (IEL)</source><creator>Diorio, C. ; Hasler, P. ; Minch, B.A. ; Mead, C.A.</creator><creatorcontrib>Diorio, C. ; Hasler, P. ; Minch, B.A. ; Mead, C.A.</creatorcontrib><description>We have demonstrated on-chip learning in an array of floating-gate MOS synapse transistors. The array comprises one synapse transistor at each node, and normalization circuitry at the row boundaries. The array computes the inner product of a column input vector and a stored weight matrix. The weights are stored as floating-gate charge; they are nonvolatile, but can increase when we apply a row-learn signal. The input and learn signals are digital pulses; column input pulses that are coincident with row-learn pulses cause weight increases at selected synapses. The normalization circuitry forces row synapses to compete for floating-gate charge, bounding the weight values. The array simultaneously exhibits fast computation and slow adaptation: The inner product computes in 10 /spl mu/s, whereas the weight normalization takes minutes to hours.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.644652</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive arrays ; Analog computers ; Biology computing ; Circuits ; Concurrent computing ; Energy consumption ; Learning systems ; MOSFETs ; Physics computing ; Silicon</subject><ispartof>IEEE transactions on electron devices, 1997-12, Vol.44 (12), p.2281-2289</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-7458dcef7b91a8c3400f45daca0a5d8324f0cd311280c314258addbec6888fe33</citedby><cites>FETCH-LOGICAL-c374t-7458dcef7b91a8c3400f45daca0a5d8324f0cd311280c314258addbec6888fe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/644652$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/644652$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diorio, C.</creatorcontrib><creatorcontrib>Hasler, P.</creatorcontrib><creatorcontrib>Minch, B.A.</creatorcontrib><creatorcontrib>Mead, C.A.</creatorcontrib><title>A floating-gate MOS learning array with locally computed weight updates</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We have demonstrated on-chip learning in an array of floating-gate MOS synapse transistors. The array comprises one synapse transistor at each node, and normalization circuitry at the row boundaries. The array computes the inner product of a column input vector and a stored weight matrix. The weights are stored as floating-gate charge; they are nonvolatile, but can increase when we apply a row-learn signal. The input and learn signals are digital pulses; column input pulses that are coincident with row-learn pulses cause weight increases at selected synapses. The normalization circuitry forces row synapses to compete for floating-gate charge, bounding the weight values. The array simultaneously exhibits fast computation and slow adaptation: The inner product computes in 10 /spl mu/s, whereas the weight normalization takes minutes to hours.</description><subject>Adaptive arrays</subject><subject>Analog computers</subject><subject>Biology computing</subject><subject>Circuits</subject><subject>Concurrent computing</subject><subject>Energy consumption</subject><subject>Learning systems</subject><subject>MOSFETs</subject><subject>Physics computing</subject><subject>Silicon</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpDKxMnpAYUvxtZ6wqWpCKOgBz5NqXNshtgp2o6r8nKBVzp9PdPfcOh9A9JRNKSf5M1UQJoSS7QCMqpc5yJdQlGhFCTZZzw6_RTUrffdszNkKLKS5Dbdtqv8k2tgX8vvrAAWzc9xNsY7RHfKjaLQ61syEcsat3TdeCxweoNtsWd43vz9ItuiptSHB3qmP0NX_5nL1my9XibTZdZo5r0WZaSOMdlHqdU2scF4SUQnrrLLHSG85ESZznlDJDHKeCSWO9X4NTxpgSOB-jxyG3ifVPB6ktdlVyEILdQ92lghmje8vOgMzkmp2RqKQWVJsePg3QxTqlCGXRxGpn47GgpPh7fkFVMTy_tw-DrQDg352Wv-kLflQ</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Diorio, C.</creator><creator>Hasler, P.</creator><creator>Minch, B.A.</creator><creator>Mead, C.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19971201</creationdate><title>A floating-gate MOS learning array with locally computed weight updates</title><author>Diorio, C. ; Hasler, P. ; Minch, B.A. ; Mead, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-7458dcef7b91a8c3400f45daca0a5d8324f0cd311280c314258addbec6888fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adaptive arrays</topic><topic>Analog computers</topic><topic>Biology computing</topic><topic>Circuits</topic><topic>Concurrent computing</topic><topic>Energy consumption</topic><topic>Learning systems</topic><topic>MOSFETs</topic><topic>Physics computing</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diorio, C.</creatorcontrib><creatorcontrib>Hasler, P.</creatorcontrib><creatorcontrib>Minch, B.A.</creatorcontrib><creatorcontrib>Mead, C.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diorio, C.</au><au>Hasler, P.</au><au>Minch, B.A.</au><au>Mead, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A floating-gate MOS learning array with locally computed weight updates</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>44</volume><issue>12</issue><spage>2281</spage><epage>2289</epage><pages>2281-2289</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We have demonstrated on-chip learning in an array of floating-gate MOS synapse transistors. The array comprises one synapse transistor at each node, and normalization circuitry at the row boundaries. The array computes the inner product of a column input vector and a stored weight matrix. The weights are stored as floating-gate charge; they are nonvolatile, but can increase when we apply a row-learn signal. The input and learn signals are digital pulses; column input pulses that are coincident with row-learn pulses cause weight increases at selected synapses. The normalization circuitry forces row synapses to compete for floating-gate charge, bounding the weight values. The array simultaneously exhibits fast computation and slow adaptation: The inner product computes in 10 /spl mu/s, whereas the weight normalization takes minutes to hours.</abstract><pub>IEEE</pub><doi>10.1109/16.644652</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1997-12, Vol.44 (12), p.2281-2289
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28876882
source IEEE Electronic Library (IEL)
subjects Adaptive arrays
Analog computers
Biology computing
Circuits
Concurrent computing
Energy consumption
Learning systems
MOSFETs
Physics computing
Silicon
title A floating-gate MOS learning array with locally computed weight updates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20floating-gate%20MOS%20learning%20array%20with%20locally%20computed%20weight%20updates&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Diorio,%20C.&rft.date=1997-12-01&rft.volume=44&rft.issue=12&rft.spage=2281&rft.epage=2289&rft.pages=2281-2289&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.644652&rft_dat=%3Cproquest_RIE%3E28289723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26574178&rft_id=info:pmid/&rft_ieee_id=644652&rfr_iscdi=true