The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study

In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023, Vol.30 (2), p.5089-5102
Hauptverfasser: Mehrabanpour, Najme, Nezamzadeh-Ejhieh, Alireza, Ghattavi, Shirin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5102
container_issue 2
container_start_page 5089
container_title Environmental science and pollution research international
container_volume 30
creator Mehrabanpour, Najme
Nezamzadeh-Ejhieh, Alireza
Ghattavi, Shirin
description In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM–EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k -values of 0.013 min −1 and 0.023 min −1 . When the photodegraded CT solutions were used in COD experiments, the k -values changed to 0.011 min −1 and 0.029 min −1 , respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.
doi_str_mv 10.1007/s11356-022-22557-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887634572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703986344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-408f34bb1b8ace8a36b621bdd9b6a1b5dc448445b5359c704b75b1fc41444bfa3</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMo9lr9Ay4k4MbNaD5OJhl3cvELCi7arkM-7dS5kzHJIFf_fHN7q4KLCoFA8rzv4fAg9JyS15QQ-aZQykXfEcY6xoSQHXmANrSn0EkYhodoQwaAjnKAE_SklGtCGBmYfIxOuBikYlxt0K-Lq4BtSqUGj5erVJMz1Uz7OjocYgyuFpwiNvhnSNNYAy7rsqR8oLf-HNf0w2RfsJnbqaMd0yG4Sz5MeEnTtNb2_LbFbR5DxN_GOTSg4FJXv3-KHkUzlfDs7j5Flx_eX2w_dWdfPn7evjvrHOeqdkBU5GAttcq4oAzvbc-o9X6wvaFWeAegAIQVbS0nCVgpLI0OKADYaPgpenXsXXL6voZS9W4sLkyTmUNai2ZKyZ6DkOz_qCR8UA2Ghr78B71Oa57bIo2SFNSgbgvZkXI5lZJD1EsedybvNSX6YFEfLepmUd9a1KSFXtxVr3YX_J_Ib20N4EegtK_5a8h_Z99TewMMU6i-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771489872</pqid></control><display><type>article</type><title>The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mehrabanpour, Najme ; Nezamzadeh-Ejhieh, Alireza ; Ghattavi, Shirin</creator><creatorcontrib>Mehrabanpour, Najme ; Nezamzadeh-Ejhieh, Alireza ; Ghattavi, Shirin</creatorcontrib><description>In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM–EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k -values of 0.013 min −1 and 0.023 min −1 . When the photodegraded CT solutions were used in COD experiments, the k -values changed to 0.011 min −1 and 0.029 min −1 , respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-022-22557-0</identifier><identifier>PMID: 35978238</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>absorption ; Anti-Bacterial Agents - chemistry ; Antibiotics ; Aquatic environment ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Cadmium sulfide ; Catalysts ; Catalytic activity ; Cefotaxime ; Computed tomography ; cost effectiveness ; Crystallites ; Crystals ; Earth and Environmental Science ; Ecotoxicology ; energy-dispersive X-ray analysis ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental Pollutants ; Environmental science ; Fourier transform infrared spectroscopy ; Fourier transforms ; Industrial areas ; Industrial pollution ; Infrared analysis ; Iran ; Kinetics ; Nanoparticles ; Photocatalysis ; Photodegradation ; photolysis ; Pollutants ; pollution ; Pollution control ; reflectance spectroscopy ; Research Article ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wavelengths ; World population ; Wurtzite ; X ray powder diffraction ; X-ray diffraction ; Zeolites</subject><ispartof>Environmental science and pollution research international, 2023, Vol.30 (2), p.5089-5102</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-408f34bb1b8ace8a36b621bdd9b6a1b5dc448445b5359c704b75b1fc41444bfa3</citedby><cites>FETCH-LOGICAL-c338t-408f34bb1b8ace8a36b621bdd9b6a1b5dc448445b5359c704b75b1fc41444bfa3</cites><orcidid>0000-0002-8123-6968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-022-22557-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-022-22557-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35978238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrabanpour, Najme</creatorcontrib><creatorcontrib>Nezamzadeh-Ejhieh, Alireza</creatorcontrib><creatorcontrib>Ghattavi, Shirin</creatorcontrib><title>The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM–EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k -values of 0.013 min −1 and 0.023 min −1 . When the photodegraded CT solutions were used in COD experiments, the k -values changed to 0.011 min −1 and 0.029 min −1 , respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.</description><subject>absorption</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Antibiotics</subject><subject>Aquatic environment</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Cadmium sulfide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cefotaxime</subject><subject>Computed tomography</subject><subject>cost effectiveness</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>energy-dispersive X-ray analysis</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental Pollutants</subject><subject>Environmental science</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Industrial areas</subject><subject>Industrial pollution</subject><subject>Infrared analysis</subject><subject>Iran</subject><subject>Kinetics</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>photolysis</subject><subject>Pollutants</subject><subject>pollution</subject><subject>Pollution control</subject><subject>reflectance spectroscopy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wavelengths</subject><subject>World population</subject><subject>Wurtzite</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>Zeolites</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1rFTEUhoMo9lr9Ay4k4MbNaD5OJhl3cvELCi7arkM-7dS5kzHJIFf_fHN7q4KLCoFA8rzv4fAg9JyS15QQ-aZQykXfEcY6xoSQHXmANrSn0EkYhodoQwaAjnKAE_SklGtCGBmYfIxOuBikYlxt0K-Lq4BtSqUGj5erVJMz1Uz7OjocYgyuFpwiNvhnSNNYAy7rsqR8oLf-HNf0w2RfsJnbqaMd0yG4Sz5MeEnTtNb2_LbFbR5DxN_GOTSg4FJXv3-KHkUzlfDs7j5Flx_eX2w_dWdfPn7evjvrHOeqdkBU5GAttcq4oAzvbc-o9X6wvaFWeAegAIQVbS0nCVgpLI0OKADYaPgpenXsXXL6voZS9W4sLkyTmUNai2ZKyZ6DkOz_qCR8UA2Ghr78B71Oa57bIo2SFNSgbgvZkXI5lZJD1EsedybvNSX6YFEfLepmUd9a1KSFXtxVr3YX_J_Ib20N4EegtK_5a8h_Z99TewMMU6i-</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mehrabanpour, Najme</creator><creator>Nezamzadeh-Ejhieh, Alireza</creator><creator>Ghattavi, Shirin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8123-6968</orcidid></search><sort><creationdate>2023</creationdate><title>The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study</title><author>Mehrabanpour, Najme ; Nezamzadeh-Ejhieh, Alireza ; Ghattavi, Shirin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-408f34bb1b8ace8a36b621bdd9b6a1b5dc448445b5359c704b75b1fc41444bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Antibiotics</topic><topic>Aquatic environment</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Cadmium sulfide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cefotaxime</topic><topic>Computed tomography</topic><topic>cost effectiveness</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>energy-dispersive X-ray analysis</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental Pollutants</topic><topic>Environmental science</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Industrial areas</topic><topic>Industrial pollution</topic><topic>Infrared analysis</topic><topic>Iran</topic><topic>Kinetics</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>photolysis</topic><topic>Pollutants</topic><topic>pollution</topic><topic>Pollution control</topic><topic>reflectance spectroscopy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wavelengths</topic><topic>World population</topic><topic>Wurtzite</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrabanpour, Najme</creatorcontrib><creatorcontrib>Nezamzadeh-Ejhieh, Alireza</creatorcontrib><creatorcontrib>Ghattavi, Shirin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrabanpour, Najme</au><au>Nezamzadeh-Ejhieh, Alireza</au><au>Ghattavi, Shirin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>5089</spage><epage>5102</epage><pages>5089-5102</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>In recent decades, increased world population and industrial activities explosively polluted our environment, especially the aquatic resources. This requires introducing/developing novel methods to decrease the pollution extent of such resources. Here, the hexagonal (wurtzite) CdS nanoparticles (NPs) were synthesized and supported onto ball-mill prepared clinoptilolite NPs (CNP). Samples were briefly characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope equipped with an energy dispersive X-ray analyzer (SEM–EDX), and diffuse reflectance spectroscopy (DRS) techniques. The average crystallite size for CdS NPs and CdS-CNP samples was estimated to be about 9.0 nm and 12.3 nm (from the Scherrer formula) and about 19.7 and 17.5 nm (from the Williamson-Hall model), respectively. From the DRS spectra, the absorption wavelengths of 595 and 546 nm correspond to band gap energies of 2.08, and 2.27 eV was obtained for CdS NPs and CdS-CNP samples. The samples were then used in the photodegradation of cefotaxime (CT), and the results showed a boosted photocatalytic activity for CdS-CNP rather than CdS NPs. The photodegradation process obeyed the pseudo-first-order kinetic model, and the CdS and CdS-CNP catalysts obtained the k -values of 0.013 min −1 and 0.023 min −1 . When the photodegraded CT solutions were used in COD experiments, the k -values changed to 0.011 min −1 and 0.029 min −1 , respectively. The zeolite support is an eco-friendly natural zeolite with abundant deposits in Iran that yields a cost-effective method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35978238</pmid><doi>10.1007/s11356-022-22557-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8123-6968</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2023, Vol.30 (2), p.5089-5102
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2887634572
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects absorption
Anti-Bacterial Agents - chemistry
Antibiotics
Aquatic environment
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Cadmium sulfide
Catalysts
Catalytic activity
Cefotaxime
Computed tomography
cost effectiveness
Crystallites
Crystals
Earth and Environmental Science
Ecotoxicology
energy-dispersive X-ray analysis
Environment
Environmental Chemistry
Environmental Health
Environmental Pollutants
Environmental science
Fourier transform infrared spectroscopy
Fourier transforms
Industrial areas
Industrial pollution
Infrared analysis
Iran
Kinetics
Nanoparticles
Photocatalysis
Photodegradation
photolysis
Pollutants
pollution
Pollution control
reflectance spectroscopy
Research Article
Scanning electron microscopy
Spectroscopy
Spectrum analysis
Waste Water Technology
Water Management
Water Pollution Control
Wavelengths
World population
Wurtzite
X ray powder diffraction
X-ray diffraction
Zeolites
title The boosted photocatalytic effects of a zeolite supported CdS towards an antibiotic model pollutant: a brief kinetics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A26%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20boosted%20photocatalytic%20effects%20of%20a%20zeolite%20supported%20CdS%20towards%20an%20antibiotic%20model%20pollutant:%20a%20brief%20kinetics%20study&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Mehrabanpour,%20Najme&rft.date=2023&rft.volume=30&rft.issue=2&rft.spage=5089&rft.epage=5102&rft.pages=5089-5102&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-022-22557-0&rft_dat=%3Cproquest_cross%3E2703986344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771489872&rft_id=info:pmid/35978238&rfr_iscdi=true